論文の概要: Unpaired Image Dehazing via Kolmogorov-Arnold Transformation of Latent Features
- arxiv url: http://arxiv.org/abs/2502.07812v1
- Date: Sat, 08 Feb 2025 12:24:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-13 13:48:20.992729
- Title: Unpaired Image Dehazing via Kolmogorov-Arnold Transformation of Latent Features
- Title(参考訳): Kolmogorov-Arnold変換による遅延特徴の非ペア画像デハージング
- Authors: Le-Anh Tran,
- Abstract要約: 本稿では,Kolmogorov-Arnold Transformation, UID-KATによる教師なし画像復調のための革新的なフレームワークを提案する。
提案するUID-KATフレームワークは,実世界のデータの豊富さを活かし,ペア/クリーンな画像を作成するという課題に対処するために,教師なし環境で訓練されている。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This paper proposes an innovative framework for Unsupervised Image Dehazing via Kolmogorov-Arnold Transformation, termed UID-KAT. Image dehazing is recognized as a challenging and ill-posed vision task that requires complex transformations and interpretations in the feature space. Recent advancements have introduced Kolmogorov-Arnold Networks (KANs), inspired by the Kolmogorov-Arnold representation theorem, as promising alternatives to Multi-Layer Perceptrons (MLPs) since KANs can leverage their polynomial foundation to more efficiently approximate complex functions while requiring fewer layers than MLPs. Motivated by this potential, this paper explores the use of KANs combined with adversarial training and contrastive learning to model the intricate relationship between hazy and clear images. Adversarial training is employed due to its capacity in producing high-fidelity images, and contrastive learning promotes the model's emphasis on significant features while suppressing the influence of irrelevant information. The proposed UID-KAT framework is trained in an unsupervised setting to take advantage of the abundance of real-world data and address the challenge of preparing paired hazy/clean images. Experimental results show that UID-KAT achieves state-of-the-art dehazing performance across multiple datasets and scenarios, outperforming existing unpaired methods while reducing model complexity. The source code for this work is publicly available at https://github.com/tranleanh/uid-kat.
- Abstract(参考訳): 本稿では,UID-KATと呼ばれるKolmogorov-Arnold変換による教師なし画像復調のための革新的なフレームワークを提案する。
画像のデハジングは、複雑な変換と特徴空間の解釈を必要とする、困難で不適切な視覚タスクとして認識されている。
近年の進歩は、コルモゴロフ・アルノルドの表現定理に触発されたコルモゴロフ・アルノルドネットワーク(KAN)を導入し、カンスが多項式基底をより効率的に近似し、MLPよりも少ない層を必要とするため、多層パーセプトロン(MLP)の代替として期待できる。
この可能性に感銘を受けた本論文では,両画像の複雑な関係をモデル化するために,逆行訓練とコントラスト学習を併用したカンの利用について検討する。
逆行訓練は高忠実度画像の生成能力のために採用され、対照的な学習は、無関係な情報の影響を抑えながら、重要な特徴にモデルが重点を置くことを促進する。
提案するUID-KATフレームワークは,実世界のデータの豊富さを生かした教師なしの環境で訓練され,ペア化されたハジー/クリーンな画像を作成するという課題に対処する。
実験結果から,UID-KATは複数のデータセットやシナリオにまたがって最先端のデハージング性能を実現し,モデルの複雑さを低減しつつ,既存のアンペアメソッドよりも優れていたことが示唆された。
この作業のソースコードはhttps://github.com/tranleanh/uid-kat.comで公開されている。
関連論文リスト
- Multi-Head Attention Driven Dynamic Visual-Semantic Embedding for Enhanced Image-Text Matching [0.8611782340880084]
本研究は,MH-CVSE (Multi-Headed Consensus-Aware Visual-Semantic Embedding) を用いた視覚的セマンティック埋め込みモデルを提案する。
本モデルでは,コンセンサスを意識した視覚的セマンティック埋め込みモデル(CVSE)に基づくマルチヘッド自己認識機構を導入し,複数のサブ空間の情報を並列に取得する。
損失関数設計においては、MH-CVSEモデルは、損失値自体に応じて動的に重量を調整するために動的重量調整戦略を採用する。
論文 参考訳(メタデータ) (2024-12-26T11:46:22Z) - Adapting Diffusion Models for Improved Prompt Compliance and Controllable Image Synthesis [43.481539150288434]
この作品は新しい家族を紹介します。
因子グラフ拡散モデル(FG-DM)
FG-DMは結合分布をモデル化する。
イメージやコンディショニング変数、例えばセマンティック、スケッチなどです。
因子グラフ分解による 奥行きや正常な地図です
論文 参考訳(メタデータ) (2024-10-29T00:54:00Z) - DRACO-DehazeNet: An Efficient Image Dehazing Network Combining Detail Recovery and a Novel Contrastive Learning Paradigm [3.649619954898362]
Detail RecoveryとContrastive DehazeNetは、特定のデハズされたシーンコンテキストへの拡張を調整した、詳細なイメージリカバリネットワークである。
大きな革新は、新しい四重項損失に基づくコントラストデハージングパラダイムによって達成された、限られたデータで効果的にトレーニングできることである。
論文 参考訳(メタデータ) (2024-10-18T16:48:31Z) - U-KAN Makes Strong Backbone for Medical Image Segmentation and Generation [48.40120035775506]
Kolmogorov-Arnold Networks (KAN)は、非線形学習可能なアクティベーション関数のスタックを通じてニューラルネットワーク学習を再構築する。
トークン化中間表現であるU-KAN上に専用kan層を統合することにより,確立したU-Netパイプラインを検証,修正,再設計する。
さらに、拡散モデルにおける代替U-Netノイズ予測器としてのU-KANの可能性を探り、タスク指向モデルアーキテクチャの生成にその適用性を実証した。
論文 参考訳(メタデータ) (2024-06-05T04:13:03Z) - Multi-task Image Restoration Guided By Robust DINO Features [88.74005987908443]
DINOv2から抽出したロバストな特徴を利用したマルチタスク画像復元手法であるmboxtextbfDINO-IRを提案する。
まず,DINOV2の浅い特徴を動的に融合するPSF (Pixel-semantic fusion) モジュールを提案する。
これらのモジュールを統一された深層モデルに定式化することにより、モデルトレーニングを制約するために、DINO知覚の対照的な損失を提案する。
論文 参考訳(メタデータ) (2023-12-04T06:59:55Z) - SODA: Bottleneck Diffusion Models for Representation Learning [75.7331354734152]
本稿では,表現学習のための自己教師付き拡散モデルSODAを紹介する。
このモデルには、ソースビューをコンパクトな表現に蒸留するイメージエンコーダが組み込まれており、関連する新規ビューの生成を導く。
エンコーダと復調復調復調復調復調復調復調復調復号器の密集ボトルネックを付与することにより,拡散モデルを強力な表現学習器に変換することができることを示す。
論文 参考訳(メタデータ) (2023-11-29T18:53:34Z) - CamDiff: Camouflage Image Augmentation via Diffusion Model [83.35960536063857]
CamDiffは、カモフラージュされたシーンで透明なオブジェクトを合成するための新しいアプローチだ。
我々は,潜伏拡散モデルを用いて,カモフラージュされたシーンで有能な物体を合成する。
当社のアプローチでは、フレキシブルな編集と大規模データセットの効率的な生成を低コストで実現している。
論文 参考訳(メタデータ) (2023-04-11T19:37:47Z) - Bridging Synthetic and Real Images: a Transferable and Multiple
Consistency aided Fundus Image Enhancement Framework [61.74188977009786]
画像強調とドメイン適応を同時に行うために,エンドツーエンドの教師支援フレームワークを提案する。
また,教師ネットワークと学生ネットワークのバックボーンとして,マルチステージ型マルチアテンション・ガイド・エンハンスメント・ネットワーク(MAGE-Net)を提案する。
論文 参考訳(メタデータ) (2023-02-23T06:16:15Z) - Robust Single Image Dehazing Based on Consistent and Contrast-Assisted
Reconstruction [95.5735805072852]
画像復調モデルのロバスト性を改善するための新しい密度変分学習フレームワークを提案する。
具体的には、デハジングネットワークは、一貫性の規則化されたフレームワークの下で最適化されている。
我々の手法は最先端のアプローチを大きく上回っている。
論文 参考訳(メタデータ) (2022-03-29T08:11:04Z) - Unpaired Deep Image Dehazing Using Contrastive Disentanglement Learning [36.24651058888557]
そこで本稿では,未ペアのクリアでヘイズな画像の集合から,効果的な未ペア学習に基づく画像デハージングネットワークを提案する。
提案手法は,既存の最先端デヘイズ手法に対して良好に機能することを示す。
論文 参考訳(メタデータ) (2022-03-15T06:45:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。