論文の概要: Advancing Precision Oncology Through Modeling of Longitudinal and Multimodal Data
- arxiv url: http://arxiv.org/abs/2502.07836v1
- Date: Tue, 11 Feb 2025 01:44:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-13 13:44:58.353623
- Title: Advancing Precision Oncology Through Modeling of Longitudinal and Multimodal Data
- Title(参考訳): 縦・マルチモーダルデータのモデリングによる精度オンコロジーの向上
- Authors: Luoting Zhuang, Stephen H. Park, Steven J. Skates, Ashley E. Prosper, Denise R. Aberle, William Hsu,
- Abstract要約: 癌は、遺伝子、エピジェネティック、ミクロ環境、表現型の変化の複雑な相互作用を通じて、時間とともに継続的に進化する。
今日の腫瘍学におけるデータ駆動研究は、主に1つのモダリティのデータを用いた断面解析に焦点を当てている。
マルチスケールデータ収集および計算手法の進歩により、精度オンコロジーのための長手マルチモーダルバイオマーカーの発見が可能になった。
- 参考スコア(独自算出の注目度): 1.6163129903911508
- License:
- Abstract: Cancer evolves continuously over time through a complex interplay of genetic, epigenetic, microenvironmental, and phenotypic changes. This dynamic behavior drives uncontrolled cell growth, metastasis, immune evasion, and therapy resistance, posing challenges for effective monitoring and treatment. However, today's data-driven research in oncology has primarily focused on cross-sectional analysis using data from a single modality, limiting the ability to fully characterize and interpret the disease's dynamic heterogeneity. Advances in multiscale data collection and computational methods now enable the discovery of longitudinal multimodal biomarkers for precision oncology. Longitudinal data reveal patterns of disease progression and treatment response that are not evident from single-timepoint data, enabling timely abnormality detection and dynamic treatment adaptation. Multimodal data integration offers complementary information from diverse sources for more precise risk assessment and targeting of cancer therapy. In this review, we survey methods of longitudinal and multimodal modeling, highlighting their synergy in providing multifaceted insights for personalized care tailored to the unique characteristics of a patient's cancer. We summarize the current challenges and future directions of longitudinal multimodal analysis in advancing precision oncology.
- Abstract(参考訳): 癌は、遺伝子、エピジェネティック、ミクロ環境、表現型の変化の複雑な相互作用を通じて、時間とともに継続的に進化する。
この動的な行動は、制御されていない細胞の成長、転移、免疫回避、治療抵抗を誘導し、効果的なモニタリングと治療の課題を提起する。
しかし、今日の腫瘍学におけるデータ駆動研究は、主に単一モードのデータを用いた断面解析に焦点を当てており、病気の動的不均一性を完全に特徴づけ、解釈する能力を制限している。
マルチスケールデータ収集および計算手法の進歩により、精度オンコロジーのための長手マルチモーダルバイオマーカーの発見が可能になった。
縦断データから, 単点データから明らかでない疾患進行と治療反応のパターンが明らかとなり, 時間的異常検出と動的治療適応が可能となった。
マルチモーダルデータ統合は、がん治療のより正確なリスク評価とターゲティングのために、様々なソースから補完的な情報を提供する。
本総説では, がんの特異な特徴に合わせたパーソナライズされたケアに多面的洞察を提供する上での相乗効果について, 縦・マルチモーダルモデリングの手法について検討する。
精度オンコロジーを推し進める上での縦型マルチモーダル解析の課題と今後の方向性を概説する。
関連論文リスト
- Continually Evolved Multimodal Foundation Models for Cancer Prognosis [50.43145292874533]
がん予後は、患者の予後と生存率を予測する重要なタスクである。
これまでの研究では、臨床ノート、医療画像、ゲノムデータなどの多様なデータモダリティを統合し、補完的な情報を活用している。
既存のアプローチには2つの大きな制限がある。まず、各病院の患者記録など、各種のトレーニングに新しく到着したデータを組み込むことに苦慮する。
第二に、ほとんどのマルチモーダル統合手法は単純化された結合やタスク固有のパイプラインに依存しており、モダリティ間の複雑な相互依存を捉えることができない。
論文 参考訳(メタデータ) (2025-01-30T06:49:57Z) - Multimodal Data Integration for Precision Oncology: Challenges and Future Directions [10.817613081663007]
正確な腫瘍学の本質は、腫瘍の個々の特性に基づいて、各患者に標的とした治療とケアの調整を約束することにある。
過去10年間で、精度オンコロジーのためのマルチモーダルデータ統合技術は、大きな進歩を遂げてきた。
精密腫瘍学における最先端のマルチモーダルデータ統合技術について概説した約300の論文の概要を概説する。
論文 参考訳(メタデータ) (2024-06-28T02:35:05Z) - Unlocking the Power of Multi-institutional Data: Integrating and Harmonizing Genomic Data Across Institutions [3.5489676012585236]
共通遺伝子を超えて情報を保存するための統合的特徴を導出するためにブリッジモデルを導入する。
このモデルは、GenIE BPCデータにおいて、6種類のがん種にわたる患者の生存を予測するのに一貫して優れている。
論文 参考訳(メタデータ) (2024-01-30T23:25:05Z) - Incomplete Multimodal Learning for Complex Brain Disorders Prediction [65.95783479249745]
本稿では,変換器と生成対向ネットワークを用いた不完全なマルチモーダルデータ統合手法を提案する。
アルツハイマー病神経画像イニシアチブコホートを用いたマルチモーダルイメージングによる認知変性と疾患予後の予測に本手法を適用した。
論文 参考訳(メタデータ) (2023-05-25T16:29:16Z) - Multimodal Data Integration for Oncology in the Era of Deep Neural Networks: A Review [0.0]
多様なデータ型を統合することで、がんの診断と治療の精度と信頼性が向上する。
ディープニューラルネットワークは、洗練されたマルチモーダルデータ融合アプローチの開発を促進する。
グラフニューラルネットワーク(GNN)やトランスフォーマーといった最近のディープラーニングフレームワークは、マルチモーダル学習において顕著な成功を収めている。
論文 参考訳(メタデータ) (2023-03-11T17:52:03Z) - Deep Biological Pathway Informed Pathology-Genomic Multimodal Survival
Prediction [7.133948707208067]
本稿では,新しい生物学的経路インフォームド・病理-ゲノム深層モデルであるPONETを提案する。
提案手法は優れた予測性能を達成し,有意義な生物学的解釈を明らかにする。
論文 参考訳(メタデータ) (2023-01-06T05:24:41Z) - Deep learning methods for drug response prediction in cancer:
predominant and emerging trends [50.281853616905416]
がんを研究・治療するための計算予測モデルをエクスプロイトすることは、薬物開発の改善と治療計画のパーソナライズドデザインにおいて大きな可能性を秘めている。
最近の研究の波は、ディープラーニング手法を用いて、薬物治療に対するがん反応を予測するという有望な結果を示している。
このレビューは、この分野の現状をよりよく理解し、主要な課題と将来性のあるソリューションパスを特定します。
論文 参考訳(メタデータ) (2022-11-18T03:26:31Z) - MIA-Prognosis: A Deep Learning Framework to Predict Therapy Response [58.0291320452122]
本稿では,患者の予後と治療反応を予測するための統合型深層学習手法を提案する。
我々は,マルチモーダル非同期時系列分類タスクとして,確率モデリングを定式化する。
我々の予測モデルは、長期生存の観点から、低リスク、高リスクの患者をさらに階層化する可能性がある。
論文 参考訳(メタデータ) (2020-10-08T15:30:17Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z) - Trajectories, bifurcations and pseudotime in large clinical datasets:
applications to myocardial infarction and diabetes data [94.37521840642141]
混合データ型と欠落値を特徴とする大規模臨床データセット分析のための半教師付き方法論を提案する。
この手法は、次元の減少、データの可視化、クラスタリング、特徴の選択と、部分的に順序付けられた観測列における測地距離(擬時)の定量化のタスクを同時に扱うことのできる弾性主グラフの適用に基づいている。
論文 参考訳(メタデータ) (2020-07-07T21:04:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。