論文の概要: TransMLA: Multi-Head Latent Attention Is All You Need
- arxiv url: http://arxiv.org/abs/2502.07864v2
- Date: Thu, 13 Feb 2025 18:07:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-14 15:38:06.14794
- Title: TransMLA: Multi-Head Latent Attention Is All You Need
- Title(参考訳): TransMLA:マルチヘッドの潜伏注意は必要なだけ
- Authors: Fanxu Meng, Zengwei Yao, Muhan Zhang,
- Abstract要約: 大規模言語モデルにおける通信ボトルネックを解決するために,MLA(Multi-head Latent Attention)を導入する。
我々は、同じKVキャッシュのオーバーヘッドを維持しながら、GQAを常にMLAで表現できることを示すが、逆は保たない。
我々は,変換モデルにおける低レイテンシを維持するため,MLA固有の推論高速化技術を開発することを計画している。
- 参考スコア(独自算出の注目度): 22.354283924006786
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modern large language models (LLMs) often encounter communication bottlenecks on current hardware, rather than purely computational constraints. Multi-head Latent Attention (MLA) tackles this challenge by using low-rank matrices in the key-value (KV) layers, thereby allowing compressed latent KV states to be cached. This approach significantly reduces the KV cache size relative to traditional multi-head attention, leading to faster inference. Moreover, MLA employs an up-projection matrix to increase expressiveness, trading additional computation for reduced communication overhead. Although MLA has demonstrated efficiency and effectiveness in Deepseek V2/V3/R1, many major model providers still rely on Group Query Attention (GQA) and have not announced any plans to adopt MLA. In this paper, we show that GQA can always be represented by MLA while maintaining the same KV cache overhead, but the converse does not hold. To encourage broader use of MLA, we introduce TransMLA, a post-training method that converts widely used GQA-based pre-trained models (e.g., LLaMA, Qwen, Mixtral) into MLA-based models. After conversion, the model can undergo additional training to boost expressiveness without increasing the KV cache size. Furthermore, we plan to develop MLA-specific inference acceleration techniques to preserve low latency in transformed models, thus enabling more efficient distillation of Deepseek R1.
- Abstract(参考訳): 現代の大規模言語モデル(LLM)は、純粋な計算制約ではなく、現在のハードウェア上の通信ボトルネックに遭遇することが多い。
マルチヘッド潜伏注意(MLA)は、キー値(KV)層に低ランク行列を使用することで、圧縮された潜伏状態のキャッシュを可能にする。
このアプローチにより、従来のマルチヘッドアテンションと比較してKVキャッシュサイズが大幅に削減され、推論が高速化される。
さらに、MLAは表現性を高めるためにアッププロジェクション行列を使用し、通信オーバーヘッドを減らすために追加計算を交換する。
MLAはDeepseek V2/V3/R1で効率と有効性を示したが、主要なモデルプロバイダの多くは依然としてGQA(Group Query Attention)に依存しており、MLAを採用する計画を発表していない。
本稿では,同じKVキャッシュのオーバーヘッドを維持しながら,GQAを常にMLAで表現できることを示すが,逆は成立しない。
MLAをより広く活用するために,広く使用されているGQAベースの事前学習モデル(LLaMA,Qwen,Mixtralなど)をMLAベースのモデルに変換するポストトレーニング手法であるTransMLAを導入する。
変換後、モデルはKVキャッシュサイズを増大させることなく表現性を高めるための追加のトレーニングを行うことができる。
さらに,変換モデルの低レイテンシを保ち,Deepseek R1のより効率的な蒸留を可能にするため,MLA固有の推論加速技術を開発することを計画している。
関連論文リスト
- Boosting Large Language Models with Mask Fine-Tuning [60.56962908455601]
Mask Fine-Tuning (MFT)を導入し、モデルの整合性を適切に破壊すると驚くほど性能が向上することを示した。
MFTは様々なドメインやバックボーンで一貫したパフォーマンス向上を実現している。
論文 参考訳(メタデータ) (2025-03-27T20:17:57Z) - X-EcoMLA: Upcycling Pre-Trained Attention into MLA for Efficient and Extreme KV Compression [23.023849840907594]
MLA(Multi-head Latent attention)は、KVキャッシュメモリを低ランクキー値のジョイント圧縮により最適化するように設計されている。
提案手法は,ベンチマークの性能を保ちながら,KVキャッシュを効果的に圧縮できることを示す。
論文 参考訳(メタデータ) (2025-03-14T06:49:37Z) - Towards Economical Inference: Enabling DeepSeek's Multi-Head Latent Attention in Any Transformer-based LLMs [74.74225314708225]
MLA(Multi-head Latent Attention)は、効率的かつ経済的推論を保証するために設計された革新的なアーキテクチャである。
本稿では,マルチヘッドアテンションからMLAへの移行のための,データ効率の良いファインチューニング手法を提案する。
論文 参考訳(メタデータ) (2025-02-20T18:50:42Z) - CalibQuant: 1-Bit KV Cache Quantization for Multimodal LLMs [45.77132019859689]
CalibQuantは、メモリと計算オーバーヘッドの両方を大幅に削減する、視覚的な量子化戦略である。
InternVLモデルのスループットは10倍に向上する。
論文 参考訳(メタデータ) (2025-02-15T05:08:01Z) - Enabling Autoregressive Models to Fill In Masked Tokens [50.9948753314669]
MARIA(Masked and Autoregressive Infilling Architecture)は、最先端のマスキング・インフィル・パフォーマンスを実現する新しいアプローチである。
MARIAは、トレーニング済みとARモデルを組み合わせて、隠れた状態を入力として取り込む線形デコーダをトレーニングする。
以上の結果から,MARIAはマスク入力タスクにおいて既存の手法,すなわち離散拡散モデルよりも有意に優れていたことが示唆された。
論文 参考訳(メタデータ) (2025-02-09T20:02:05Z) - MQuant: Unleashing the Inference Potential of Multimodal Large Language Models via Full Static Quantization [15.01214559812713]
MQuantは、マルチモーダル大規模言語モデル(MLLM)の課題に取り組むために設計されたポストトレーニング量子化フレームワークである。
5つのメインストリームMLLM(Qwen-VL, Mini-V, CogVLM2)では、W4A8のMQuantがほぼ浮動小数点精度(1%劣化)を実現し、推論遅延を最大30%削減する。
論文 参考訳(メタデータ) (2025-02-01T13:08:02Z) - Tensor Product Attention Is All You Need [53.69820973900921]
プロダクトアテンション(TPA)は、テンソル分解を使用してクエリ、キー、値をコンパクトに表現する新しいアテンションメカニズムである。
TPAは、メモリ効率とともに改善されたモデル品質を実現する。
TPAに基づいて、シーケンスモデリングのための新しいモデルアーキテクチャであるProduct Attention Transformer(T6)を紹介する。
論文 参考訳(メタデータ) (2025-01-11T03:37:10Z) - Multi-matrix Factorization Attention [59.10039136733939]
MFA(Multi-Matrix Factorization Attention)とMFA-Key-Reuse(MFA-KR)を提案する。
MFAは、アテンションヘッドの数と次元の両方を効率的にスケールアップすることで、モデルキャパシティを向上させる。
MFA-KRはキーキャッシュを値として再利用することでメモリ要求をさらに削減する。
論文 参考訳(メタデータ) (2024-12-26T15:45:45Z) - Anchor Attention, Small Cache: Code Generation with Large Language Models [15.94784908771546]
NLPの現在のプラクティスは、コード生成タスクにおいて、不正確な、あるいは幻覚を引き起こす可能性のある、スパースアテンションを使用することが多い。
本稿では,コンテキスト情報を抽出・圧縮するトークン・アンカー・アテンションを特徴とする新しいアプローチであるAnchorCoderを提案する。
モデルの性能の大部分を保ちながら、KVキャッシュの要求を大幅に削減できる(少なくとも70%)。
論文 参考訳(メタデータ) (2024-11-11T02:47:05Z) - LoRC: Low-Rank Compression for LLMs KV Cache with a Progressive Compression Strategy [59.1298692559785]
キーバリュー(KV)キャッシュは、トランスフォーマーベースの自己回帰型大言語モデル(LLM)を提供する上で重要なコンポーネントである。
この問題を緩和するためのアプローチとしては、(1) アップサイクルステージに統合された効率的な注意変動、(2) テスト時のKVキャッシュ圧縮、(3) テスト時のKVキャッシュ圧縮がある。
そこで我々は,KV重み行列の低ランク近似を提案し,モデル再学習なしに既存のトランスフォーマーベースLCMとのプラグイン統合を実現する。
本手法は,テスト段階におけるアップサイクリング段階のモデルチューニングやタスク固有のプロファイリングを伴わずに機能するように設計されている。
論文 参考訳(メタデータ) (2024-10-04T03:10:53Z) - ThinK: Thinner Key Cache by Query-Driven Pruning [63.13363917871414]
大規模言語モデル(LLM)は自然言語処理の分野に革命をもたらし、様々なアプリケーションで前例のない性能を達成した。
本稿では,KVキャッシュのメモリ消費の非効率性に対処する長文シナリオに焦点を当てた。
我々は,最小のチャネルを選択的に切断しながら,注目重量損失を最小限に抑える新しいクエリ依存型KVキャッシュプルーニング手法であるThinKを提案する。
論文 参考訳(メタデータ) (2024-07-30T17:59:08Z) - Spectra: Surprising Effectiveness of Pretraining Ternary Language Models at Scale [16.865532646589987]
本稿では,従来の浮動小数点モデル(FloatLM)とその後量子化バージョン(QuantLM)の代替として,低ビット幅モデル,特に第三言語モデル(TriLM)の事前学習について検討する。
我々は、FloatLMs、QuantLMs、TriLMsを含む複数のビット幅にまたがる最初のオープンなLLMスイートであるSpectra LLMスイートを、300Bトークンでトレーニングされた99Mから3.9Bのパラメータで紹介する。
論文 参考訳(メタデータ) (2024-07-17T05:53:20Z) - LCM: Locally Constrained Compact Point Cloud Model for Masked Point Modeling [47.94285833315427]
本稿では,局所的に制約されたコンパクト・エンコーダと局所的に制約されたMambaベースのデコーダからなる,局所的に制約されたコンパクト・ポイント・クラウド・モデルを提案する。
エンコーダは、パフォーマンスと効率のエレガントなバランスを達成するために、自己アテンションをローカルアグリゲーション層に置き換えます。
このデコーダは、高情報密度の未処理パッチからの点雲幾何学情報の知覚を最大化しつつ、線形複雑性を保証する。
論文 参考訳(メタデータ) (2024-05-27T13:19:23Z) - Not All Attention is Needed: Parameter and Computation Efficient Transfer Learning for Multi-modal Large Language Models [73.48675708831328]
MLLM(Multi-modal Large Language Models)のための新しいパラメータと計算効率のチューニング手法を提案する。
The Efficient Attention Skipping (EAS) method evaluate the attention redundancy and skips the less important MHAs to speed up inference。
実験により、EASは高い性能とパラメータ効率を維持するだけでなく、推論速度を大幅に高速化することが示された。
論文 参考訳(メタデータ) (2024-03-22T14:20:34Z) - BiLLM: Pushing the Limit of Post-Training Quantization for LLMs [53.31402059062365]
BiLLMは、事前訓練された大規模言語モデルに適した1ビット後のトレーニング後の量子化スキームである。
LLaMA2-70Bの8.41パープレキシティは、様々なLLMファミリーで1.08ビットの重みしか持たない。
論文 参考訳(メタデータ) (2024-02-06T09:26:34Z) - KVQuant: Towards 10 Million Context Length LLM Inference with KV Cache Quantization [67.74400574357472]
LLMは、大きなコンテキストウィンドウを必要とするアプリケーションでの利用が増えており、この大きなコンテキストウィンドウでは、KVキャッシュのアクティベーションが推論時のメモリ消費の主要な要因として表面化している。
量子化はKVキャッシュのアクティベーションを圧縮する上で有望な手法であるが、既存のソリューションは4ビット以下の精度でアクティベーションを正確に表現できない。
我々の研究であるKVQuantは、いくつかの新しい手法を取り入れることで、低精度のKVキャッシュ量子化を容易にする。
論文 参考訳(メタデータ) (2024-01-31T18:58:14Z) - Large Product Key Memory for Pretrained Language Models [12.932177565788974]
製品キーメモリ(PKM)は、計算オーバーヘッドの少ないモデル容量を効率的に増やし、予測精度を向上させる。
近年のPLM(Pretrained Language Model)の成功に触発されて,多種多様なNLPタスクに適する大規模なPKMをPLMに組み込む方法について検討した。
論文 参考訳(メタデータ) (2020-10-08T10:19:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。