Filtered Markovian Projection: Dimensionality Reduction in Filtering for Stochastic Reaction Networks
- URL: http://arxiv.org/abs/2502.07918v1
- Date: Tue, 11 Feb 2025 19:45:40 GMT
- Title: Filtered Markovian Projection: Dimensionality Reduction in Filtering for Stochastic Reaction Networks
- Authors: Chiheb Ben Hammouda, Maksim Chupin, Sophia Münker, Raúl Tempone,
- Abstract summary: A typical challenge in practical problems modeled by reaction networks (SRNs) is that only a few state variables can be dynamically observed.
We propose to use a dimensionality reduction technique based on the Markovian projection (MP), initially introduced for forward problems.
The novel method combines a particle filter with reduced variance and solving the filtering equations in a low-dimensional space.
- Score: 0.9599644507730105
- License:
- Abstract: Stochastic reaction networks (SRNs) model stochastic effects for various applications, including intracellular chemical or biological processes and epidemiology. A typical challenge in practical problems modeled by SRNs is that only a few state variables can be dynamically observed. Given the measurement trajectories, one can estimate the conditional probability distribution of unobserved (hidden) state variables by solving a stochastic filtering problem. In this setting, the conditional distribution evolves over time according to an extensive or potentially infinite-dimensional system of coupled ordinary differential equations with jumps, known as the filtering equation. The current numerical filtering techniques, such as the Filtered Finite State Projection (DAmbrosio et al., 2022), are hindered by the curse of dimensionality, significantly affecting their computational performance. To address these limitations, we propose to use a dimensionality reduction technique based on the Markovian projection (MP), initially introduced for forward problems (Ben Hammouda et al., 2024). In this work, we explore how to adapt the existing MP approach to the filtering problem and introduce a novel version of the MP, the Filtered MP, that guarantees the consistency of the resulting estimator. The novel method combines a particle filter with reduced variance and solving the filtering equations in a low-dimensional space, exploiting the advantages of both approaches. The analysis and empirical results highlight the superior computational efficiency of projection methods compared to the existing filtered finite state projection in the large dimensional setting.
Related papers
- Inverse Particle Filter [16.975704972827305]
In cognitive systems, recent emphasis has been placed on studying the cognitive processes of the subject whose behavior was the primary focus of the system's cognitive response.
This paper adopts a global filtering approach and presents the development of an inverse particle filter (I-PF)
The particle filter framework employs Monte Carlo (MC) methods to approximate arbitrary posterior distributions.
arXiv Detail & Related papers (2024-07-23T16:32:38Z) - Normalizing Flow-based Differentiable Particle Filters [16.164656853940464]
We present a differentiable particle filtering framework that usesconditional normalizing flows to build its dynamic model, proposal distribution, and measurement model.
We derive the theoretical properties of the proposed filters and evaluate the proposed normalizing flow-based differentiable particle filters' performance through a series of numerical experiments.
arXiv Detail & Related papers (2024-03-03T12:23:17Z) - Closed-form Filtering for Non-linear Systems [83.91296397912218]
We propose a new class of filters based on Gaussian PSD Models, which offer several advantages in terms of density approximation and computational efficiency.
We show that filtering can be efficiently performed in closed form when transitions and observations are Gaussian PSD Models.
Our proposed estimator enjoys strong theoretical guarantees, with estimation error that depends on the quality of the approximation and is adaptive to the regularity of the transition probabilities.
arXiv Detail & Related papers (2024-02-15T08:51:49Z) - Nonlinear Filtering with Brenier Optimal Transport Maps [4.745059103971596]
This paper is concerned with the problem of nonlinear filtering, i.e., computing the conditional distribution of the state of a dynamical system.
Conventional sequential importance resampling (SIR) particle filters suffer from fundamental limitations, in scenarios involving degenerate likelihoods or high-dimensional states.
In this paper, we explore an alternative method, which is based on estimating the Brenier optimal transport (OT) map from the current prior distribution of the state to the posterior distribution at the next time step.
arXiv Detail & Related papers (2023-10-21T01:34:30Z) - An overview of differentiable particle filters for data-adaptive
sequential Bayesian inference [19.09640071505051]
Particle filters (PFs) provide an efficient mechanism for solving non-linear sequential state estimation problems.
An emerging trend involves constructing components of particle filters using neural networks and optimising them by gradient descent.
Differentiable particle filters are a promising computational tool for performing inference on sequential data in complex, high-dimensional tasks.
arXiv Detail & Related papers (2023-02-19T18:03:53Z) - Computational Doob's h-transforms for Online Filtering of Discretely
Observed Diffusions [65.74069050283998]
We propose a computational framework to approximate Doob's $h$-transforms.
The proposed approach can be orders of magnitude more efficient than state-of-the-art particle filters.
arXiv Detail & Related papers (2022-06-07T15:03:05Z) - Deep Learning for the Benes Filter [91.3755431537592]
We present a new numerical method based on the mesh-free neural network representation of the density of the solution of the Benes model.
We discuss the role of nonlinearity in the filtering model equations for the choice of the domain of the neural network.
arXiv Detail & Related papers (2022-03-09T14:08:38Z) - An application of the splitting-up method for the computation of a
neural network representation for the solution for the filtering equations [68.8204255655161]
Filtering equations play a central role in many real-life applications, including numerical weather prediction, finance and engineering.
One of the classical approaches to approximate the solution of the filtering equations is to use a PDE inspired method, called the splitting-up method.
We combine this method with a neural network representation to produce an approximation of the unnormalised conditional distribution of the signal process.
arXiv Detail & Related papers (2022-01-10T11:01:36Z) - Innovative And Additive Outlier Robust Kalman Filtering With A Robust
Particle Filter [68.8204255655161]
We propose CE-BASS, a particle mixture Kalman filter which is robust to both innovative and additive outliers, and able to fully capture multi-modality in the distribution of the hidden state.
Furthermore, the particle sampling approach re-samples past states, which enables CE-BASS to handle innovative outliers which are not immediately visible in the observations, such as trend changes.
arXiv Detail & Related papers (2020-07-07T07:11:09Z) - When is Particle Filtering Efficient for Planning in Partially Observed
Linear Dynamical Systems? [60.703816720093016]
This paper initiates a study on the efficiency of particle filtering for sequential planning.
We are able to bound the number of particles needed so that the long-run reward of the policy based on particle filtering is close to that based on exact inference.
We believe this technique can be useful in other sequential decision-making problems.
arXiv Detail & Related papers (2020-06-10T17:43:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.