論文の概要: Welzijn.AI: Developing Responsible Conversational AI for Elderly Care through Stakeholder Involvement
- arxiv url: http://arxiv.org/abs/2502.07983v2
- Date: Thu, 24 Apr 2025 13:59:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-25 21:09:46.462957
- Title: Welzijn.AI: Developing Responsible Conversational AI for Elderly Care through Stakeholder Involvement
- Title(参考訳): Welzijn.AI:Stakeholder Involvementによる高齢者介護のための責任のある会話型AIの開発
- Authors: Bram van Dijk, Armel Lefebvre, Marco Spruit,
- Abstract要約: Welzijn.AIは高齢者の健康状態を監視するためのデジタルソリューションである。
異なる利害関係者による3つの評価は、Welzijn.AIの強み、弱点、設計特性、および価値要件に関する新たな視点を明らかにするために設計された。
- 参考スコア(独自算出の注目度): 3.257656198821199
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present Welzijn.AI as new digital solution for monitoring (mental) well-being in elderly populations, and illustrate how development of systems like Welzijn.AI can align with guidelines on responsible AI development. Three evaluations with different stakeholders were designed to disclose new perspectives on the strengths, weaknesses, design characteristics, and value requirements of Welzijn.AI. Evaluations concerned expert panels and involved patient federations, general practitioners, researchers, and the elderly themselves. Panels concerned interviews, a co-creation session, and feedback on a proof-of-concept implementation. Interview results were summarized in terms of Welzijn.AI's strengths, weaknesses, opportunities and threats. The co-creation session ranked a variety of value requirements of Welzijn.AI with the Hundred Dollar Method. User evaluation comprised analysing proportions of (dis)agreement on statements targeting Welzijn.AI's design characteristics, and ranking desired social characteristics. Experts in the panel interviews acknowledged Welzijn.AI's potential to combat loneliness and extract patterns from elderly behaviour. The proof-of-concept evaluation complemented the design characteristics most appealing to the elderly to potentially achieve this: empathetic and varying interactions. Stakeholders also link the technology to the implementation context: it could help activate an individual's social network, but support should also be available to empower users. Yet, non-elderly and elderly experts also disclose challenges in properly understanding the application; non-elderly experts also highlight issues concerning privacy. In sum, incorporating all stakeholder perspectives in system development remains challenging. Still, our results benefit researchers, policy makers, and health professionals that aim to improve elderly care with technology.
- Abstract(参考訳): Welzijn.AIを高齢者の健康状態を監視するための新しいデジタルソリューションとして紹介し、Welzijn.AIのようなシステムの開発が、責任あるAI開発に関するガイドラインとどのように一致しているかを説明する。
異なる利害関係者による3つの評価は、Welzijn.AIの強み、弱点、設計特性、および価値要件に関する新たな視点を明らかにするために設計された。
評価は、専門家パネルと、患者連盟、一般開業医、研究者、高齢者自身に関するものである。
パネルはインタビュー、共同創造セッション、概念実証実装に関するフィードバックに関するものだ。
インタビューの結果は、Welzijn.AIの強み、弱み、機会、脅威の観点から要約された。
共同創造セッションでは、Welzijn.AIのさまざまな価値要件を百ドル法でランク付けした。
ユーザ評価は,Welzijn.AIの設計特性に着目し,望ましい社会的特徴をランク付けする文に対する(不)認識の比率を分析した。
パネルインタビューのエキスパートは、ウェルジーンAIが孤独と戦う可能性を認め、高齢者の行動からパターンを抽出した。
概念実証評価は, 高齢者に最も魅力あるデザイン特性を補完し, 共感的, 多様な相互作用を実現した。
これは個人のソーシャルネットワークを活性化するのに役立ちますが、ユーザを力づけるためのサポートも必要です。
しかし、高齢者でない専門家や高齢者の専門家は、アプリケーションを適切に理解する上での課題も明らかにしている。
要するに、すべてのステークホルダ視点をシステム開発に組み込むことは、依然として困難である。
それでも、私たちの結果は、テクノロジーによる高齢者ケアを改善することを目的とした研究者、政策立案者、医療専門家に恩恵をもたらします。
関連論文リスト
- Envisioning an AI-Enhanced Mental Health Ecosystem [1.534667887016089]
ピアサポート、セルフヘルプ介入、プロアクティブモニタリング、データ駆動インサイトなど、さまざまなAIアプリケーションについて検討する。
我々は、AIが人間のプロバイダを置き換えず、責任あるデプロイメントと評価を強調するハイブリッドエコシステムを提案する。
論文 参考訳(メタデータ) (2025-03-19T04:21:38Z) - Deep Learning-Based Facial Expression Recognition for the Elderly: A Systematic Review [0.5242869847419834]
世界人口の急速な高齢化は、高齢者を支援する技術の必要性を浮き彫りにした。
表情認識(FER)システムは、感情状態を監視する非侵襲的な手段を提供する。
本研究は,高齢者を対象とした深層学習に基づくFERシステムの体系的レビューである。
論文 参考訳(メタデータ) (2025-02-04T11:05:24Z) - Toward Ethical AI: A Qualitative Analysis of Stakeholder Perspectives [0.0]
この研究は、AIシステムのプライバシーに関するステークホルダーの視点を探求し、教育者、親、AI専門家に焦点をあてる。
この研究は、227人の参加者による調査回答の質的分析を用いて、データ漏洩、倫理的誤用、過剰なデータ収集を含む主要なプライバシーリスクを特定する。
この調査結果は、堅牢なプライバシ保護とAIのメリットのバランスに関する実用的な洞察を提供する。
論文 参考訳(メタデータ) (2025-01-23T02:06:25Z) - Cutting Through the Confusion and Hype: Understanding the True Potential of Generative AI [0.0]
本稿では,生成型AI(genAI)の微妙な景観について考察する。
それは、Large Language Models (LLMs)のようなニューラルネットワークベースのモデルに焦点を当てている。
論文 参考訳(メタデータ) (2024-10-22T02:18:44Z) - The Ethics of Advanced AI Assistants [53.89899371095332]
本稿では,高度AIアシスタントがもたらす倫理的・社会的リスクについて論じる。
我々は、高度なAIアシスタントを自然言語インタフェースを持つ人工知能エージェントとして定義し、ユーザに代わってアクションのシーケンスを計画し実行することを目的としている。
先進的なアシスタントの社会規模での展開を考察し、協力、株式とアクセス、誤情報、経済的影響、環境、先進的なAIアシスタントの評価方法に焦点をあてる。
論文 参考訳(メタデータ) (2024-04-24T23:18:46Z) - Now, Later, and Lasting: Ten Priorities for AI Research, Policy, and Practice [63.20307830884542]
今後数十年は、産業革命に匹敵する人類の転換点になるかもしれない。
10年前に立ち上げられたこのプロジェクトは、複数の専門分野の専門家による永続的な研究にコミットしている。
AI技術の短期的および長期的影響の両方に対処する、アクションのための10のレコメンデーションを提供します。
論文 参考訳(メタデータ) (2024-04-06T22:18:31Z) - Particip-AI: A Democratic Surveying Framework for Anticipating Future AI Use Cases, Harms and Benefits [54.648819983899614]
汎用AIは、一般大衆がAIを使用してそのパワーを利用するための障壁を下げたようだ。
本稿では,AI利用事例とその影響を推測し,評価するためのフレームワークであるPartICIP-AIを紹介する。
論文 参考訳(メタデータ) (2024-03-21T19:12:37Z) - Testing autonomous vehicles and AI: perspectives and challenges from cybersecurity, transparency, robustness and fairness [53.91018508439669]
この研究は、人工知能を自律走行車(AV)に統合する複雑さを探求する
AIコンポーネントがもたらした課題と、テスト手順への影響を調べます。
本稿は、重要な課題を特定し、AV技術におけるAIの研究・開発に向けた今後の方向性を提案する。
論文 参考訳(メタデータ) (2024-02-21T08:29:42Z) - Analyzing Character and Consciousness in AI-Generated Social Content: A
Case Study of Chirper, the AI Social Network [0.0]
この研究はAIの振る舞いを包括的に調査し、多様な設定がチャーパーの反応に与える影響を分析している。
一連の認知テストを通じて、この研究はチャーパーズの自己認識とパターン認識の能力を評価する。
この研究の興味深い側面は、チャーパーのハンドルやパーソナリティのタイプがパフォーマンスに与える影響を探ることである。
論文 参考訳(メタデータ) (2023-08-30T15:40:18Z) - Towards FATE in AI for Social Media and Healthcare: A Systematic Review [0.0]
この調査は、AIの文脈における公正性、説明責任、透明性、倫理(FATE)の概念に焦点を当てている。
統計的および交差点的公正性は,ソーシャルメディアプラットフォーム上での医療の公平性を支持することが判明した。
シミュレーション、データ分析、自動システムといったソリューションは広く使われているが、その効果は様々である。
論文 参考訳(メタデータ) (2023-06-05T17:25:42Z) - Knowing About Knowing: An Illusion of Human Competence Can Hinder
Appropriate Reliance on AI Systems [13.484359389266864]
本稿では、Dunning-Kruger Effect(DKE)がAIシステムへの適切な依存を妨げているかどうかを論じる。
DKEは、能力の低い個人が自身のスキルやパフォーマンスを過大評価しているため、メタ認知バイアスである。
その結果、パフォーマンスを過大評価する参加者は、AIシステムへの信頼度が低い傾向にあることがわかった。
論文 参考訳(メタデータ) (2023-01-25T14:26:10Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
この分野でのAIのメリット、課題、欠点についてレビューする。
データ拡張、説明可能なAIの使用、従来の実験手法とAIの統合についても論じている。
論文 参考訳(メタデータ) (2022-12-08T23:23:39Z) - What Do End-Users Really Want? Investigation of Human-Centered XAI for
Mobile Health Apps [69.53730499849023]
説明可能なAI(XAI)を評価するために,ユーザ中心のペルソナ概念を提案する。
分析の結果,ユーザの人口統計や性格,説明のタイプ,影響説明の嗜好が示された。
私たちの洞察は、対話的で人間中心のXAIを実践的な応用に近づけます。
論文 参考訳(メタデータ) (2022-10-07T12:51:27Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
本稿では,インテリジェンスの概念に対処するさまざまな分野の既存の概念を包括的に分析する。
目的は、AIシステムを評価するための共有概念や相違点を特定することである。
論文 参考訳(メタデータ) (2021-05-07T12:01:31Z) - LioNets: A Neural-Specific Local Interpretation Technique Exploiting
Penultimate Layer Information [6.570220157893279]
解釈可能な機械学習(IML)は研究の緊急のトピックである。
本稿では,テキストデータと時系列データに適用される局所的,神経特異的な解釈プロセスに焦点を当てる。
論文 参考訳(メタデータ) (2021-04-13T09:39:33Z) - Expanding Explainability: Towards Social Transparency in AI systems [20.41177660318785]
社会透明性(英: Social Transparency、ST)とは、社会的な組織的文脈をAIによる意思決定の説明に取り入れた社会工学的な視点である。
XAIの設計空間を拡大することで、人間中心XAIの議論に貢献しています。
論文 参考訳(メタデータ) (2021-01-12T19:44:27Z) - The role of explainability in creating trustworthy artificial
intelligence for health care: a comprehensive survey of the terminology,
design choices, and evaluation strategies [1.2762298148425795]
透明性の欠如は、医療におけるAIシステムの実装における主要な障壁の1つとして認識されている。
我々は最近の文献をレビューし、説明可能なAIシステムの設計について研究者や実践者にガイダンスを提供する。
我々は、説明可能なモデリングが信頼できるAIに貢献できると結論づけるが、説明可能性の利点は実際に証明する必要がある。
論文 参考訳(メタデータ) (2020-07-31T09:08:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。