論文の概要: Towards FATE in AI for Social Media and Healthcare: A Systematic Review
- arxiv url: http://arxiv.org/abs/2306.05372v1
- Date: Mon, 5 Jun 2023 17:25:42 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-09 13:06:23.321030
- Title: Towards FATE in AI for Social Media and Healthcare: A Systematic Review
- Title(参考訳): ソーシャルメディアと医療におけるaiの運命に向けて:体系的レビュー
- Authors: Aditya Singhal, Hasnaat Tanveer, Vijay Mago
- Abstract要約: この調査は、AIの文脈における公正性、説明責任、透明性、倫理(FATE)の概念に焦点を当てている。
統計的および交差点的公正性は,ソーシャルメディアプラットフォーム上での医療の公平性を支持することが判明した。
シミュレーション、データ分析、自動システムといったソリューションは広く使われているが、その効果は様々である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: As artificial intelligence (AI) systems become more prevalent, ensuring
fairness in their design becomes increasingly important. This survey focuses on
the subdomains of social media and healthcare, examining the concepts of
fairness, accountability, transparency, and ethics (FATE) within the context of
AI. We explore existing research on FATE in AI, highlighting the benefits and
limitations of current solutions, and provide future research directions. We
found that statistical and intersectional fairness can support fairness in
healthcare on social media platforms, and transparency in AI is essential for
accountability. While solutions like simulation, data analytics, and automated
systems are widely used, their effectiveness can vary, and keeping up-to-date
with the latest research is crucial.
- Abstract(参考訳): 人工知能(AI)システムがより普及するにつれて、その設計の公正性を保証することがますます重要になる。
この調査は、ソーシャルメディアと医療のサブドメインに焦点を当て、AIの文脈における公正性、説明責任、透明性、倫理(FATE)の概念を調査します。
我々は、AIにおけるFATEに関する既存の研究を探求し、現在のソリューションの利点と限界を強調し、将来の研究方向性を提供する。
ソーシャルメディアプラットフォーム上では,統計的および交差点フェアネスが医療の公平性を支えること,そしてAIの透明性は説明責任に不可欠であることがわかった。
シミュレーションやデータ分析、自動化システムといったソリューションは広く利用されているが、その有効性は異なり、最新の研究を最新に保つことが重要である。
関連論文リスト
- AI-Driven Healthcare: A Survey on Ensuring Fairness and Mitigating Bias [2.398440840890111]
AIアプリケーションは、診断精度、治療のパーソナライゼーション、患者の結果予測を大幅に改善した。
これらの進歩は、実質的な倫理的・公正性の課題ももたらした。
これらのバイアスは、医療提供の格差をもたらし、異なる人口集団の診断精度と治療結果に影響を与える可能性がある。
論文 参考訳(メタデータ) (2024-07-29T02:39:17Z) - Towards Clinical AI Fairness: Filling Gaps in the Puzzle [15.543248260582217]
このレビューでは、医療データと提供されたAIフェアネスソリューションの両方に関して、いくつかの欠陥を体系的に指摘する。
AI技術がますます活用されている多くの医療分野において、AIフェアネスの研究の欠如を強調している。
これらのギャップを埋めるために、我々のレビューは医療研究コミュニティとAI研究コミュニティの両方にとって実行可能な戦略を前進させます。
論文 参考訳(メタデータ) (2024-05-28T07:42:55Z) - Predictable Artificial Intelligence [77.1127726638209]
本稿では予測可能なAIのアイデアと課題を紹介する。
それは、現在および将来のAIエコシステムの重要な妥当性指標を予測できる方法を探る。
予測可能性を達成することは、AIエコシステムの信頼、責任、コントロール、アライメント、安全性を促進するために不可欠である、と私たちは主張する。
論文 参考訳(メタデータ) (2023-10-09T21:36:21Z) - Ensuring Trustworthy Medical Artificial Intelligence through Ethical and
Philosophical Principles [4.705984758887425]
AIベースのコンピュータ支援診断と治療ツールは、臨床レベルを合わせるか、あるいは臨床専門家を上回ることで、医療を民主化することができる。
このようなAIツールの民主化は、ケアコストを削減し、リソース割り当てを最適化し、ケアの質を向上させる。
AIをヘルスケアに統合することは、バイアス、透明性、自律性、責任、説明責任など、いくつかの倫理的および哲学的な懸念を提起する。
論文 参考訳(メタデータ) (2023-04-23T04:14:18Z) - Fairness in AI and Its Long-Term Implications on Society [68.8204255655161]
AIフェアネスを詳しく見て、AIフェアネスの欠如が、時間の経過とともにバイアスの深化につながるかを分析します。
偏りのあるモデルが特定のグループに対してよりネガティブな現実的な結果をもたらすかについて議論する。
問題が続くと、他のリスクとの相互作用によって強化され、社会不安という形で社会に深刻な影響を及ぼす可能性がある。
論文 参考訳(メタデータ) (2023-04-16T11:22:59Z) - Human-Centric Multimodal Machine Learning: Recent Advances and Testbed
on AI-based Recruitment [66.91538273487379]
人間中心のアプローチでAIアプリケーションを開発する必要性には、ある程度のコンセンサスがある。
i)ユーティリティと社会的善、(ii)プライバシとデータ所有、(iii)透明性と説明責任、(iv)AIによる意思決定プロセスの公正性。
異種情報ソースに基づく現在のマルチモーダルアルゴリズムは、データ中の機密要素や内部バイアスによってどのように影響を受けるかを検討する。
論文 参考訳(メタデータ) (2023-02-13T16:44:44Z) - FATE in AI: Towards Algorithmic Inclusivity and Accessibility [0.0]
AIにおけるアルゴリズム上の格差、公平性、説明責任、透明性、倫理(FATE)が実装されている。
本研究では、AIによって守られている世界南部地域のFATE関連デシダータ、特に透明性と倫理について検討する。
インクリシティを促進するために、コミュニティ主導の戦略が提案され、責任あるAI設計のための代表データを収集し、キュレートする。
論文 参考訳(メタデータ) (2023-01-03T15:08:10Z) - Inherent Limitations of AI Fairness [16.588468396705366]
AIフェアネスの研究は、コンピュータ科学、社会科学、法学、哲学と結びついた豊富な研究分野へと急速に発展してきた。
AIフェアネスの測定と達成のための多くの技術的ソリューションが提案されているが、そのアプローチは近年、誤解を招く、非現実的で有害であるとして批判されている。
論文 参考訳(メタデータ) (2022-12-13T11:23:24Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
この分野でのAIのメリット、課題、欠点についてレビューする。
データ拡張、説明可能なAIの使用、従来の実験手法とAIの統合についても論じている。
論文 参考訳(メタデータ) (2022-12-08T23:23:39Z) - Causal Fairness Analysis [68.12191782657437]
意思決定設定における公平性の問題を理解し、モデル化し、潜在的に解決するためのフレームワークを導入します。
我々のアプローチの主な洞察は、観測データに存在する格差の定量化と、基礎となる、しばしば観測されていない、因果的なメカニズムの収集を結びつけることである。
本研究は,文献中の異なる基準間の関係を整理し,説明するための最初の体系的試みであるフェアネスマップにおいて,本研究の成果を左右するものである。
論文 参考訳(メタデータ) (2022-07-23T01:06:34Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
本稿では,インテリジェンスの概念に対処するさまざまな分野の既存の概念を包括的に分析する。
目的は、AIシステムを評価するための共有概念や相違点を特定することである。
論文 参考訳(メタデータ) (2021-05-07T12:01:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。