論文の概要: COMBO-Grasp: Learning Constraint-Based Manipulation for Bimanual Occluded Grasping
- arxiv url: http://arxiv.org/abs/2502.08054v1
- Date: Wed, 12 Feb 2025 01:31:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-13 13:44:52.528515
- Title: COMBO-Grasp: Learning Constraint-Based Manipulation for Bimanual Occluded Grasping
- Title(参考訳): COMBO-Grasp:バイマライズ・オブクルード・グラッピングのための学習制約に基づく操作
- Authors: Jun Yamada, Alexander L. Mitchell, Jack Collins, Ingmar Posner,
- Abstract要約: 集積ロボットグルーピングは、表面衝突などの環境制約により、所望のグルーピングポーズが運動的に不可能な場所である。
従来のロボット操作アプローチは、人間が一般的に使用する非包括的または双対的戦略の複雑さに苦しむ。
本稿では,2つの協調ポリシーを活用する学習ベースアプローチであるCOMBO-Grasp(Constraint-based Manipulation for Bimanual Occluded Grasping)を紹介する。
- 参考スコア(独自算出の注目度): 56.907940167333656
- License:
- Abstract: This paper addresses the challenge of occluded robot grasping, i.e. grasping in situations where the desired grasp poses are kinematically infeasible due to environmental constraints such as surface collisions. Traditional robot manipulation approaches struggle with the complexity of non-prehensile or bimanual strategies commonly used by humans in these circumstances. State-of-the-art reinforcement learning (RL) methods are unsuitable due to the inherent complexity of the task. In contrast, learning from demonstration requires collecting a significant number of expert demonstrations, which is often infeasible. Instead, inspired by human bimanual manipulation strategies, where two hands coordinate to stabilise and reorient objects, we focus on a bimanual robotic setup to tackle this challenge. In particular, we introduce Constraint-based Manipulation for Bimanual Occluded Grasping (COMBO-Grasp), a learning-based approach which leverages two coordinated policies: a constraint policy trained using self-supervised datasets to generate stabilising poses and a grasping policy trained using RL that reorients and grasps the target object. A key contribution lies in value function-guided policy coordination. Specifically, during RL training for the grasping policy, the constraint policy's output is refined through gradients from a jointly trained value function, improving bimanual coordination and task performance. Lastly, COMBO-Grasp employs teacher-student policy distillation to effectively deploy point cloud-based policies in real-world environments. Empirical evaluations demonstrate that COMBO-Grasp significantly improves task success rates compared to competitive baseline approaches, with successful generalisation to unseen objects in both simulated and real-world environments.
- Abstract(参考訳): 本稿では,表面衝突などの環境制約により,所望の把握ポーズがキネマティックに実現不可能な状況下での把握という,隠蔽ロボットの把握という課題に対処する。
従来のロボット操作アプローチは、このような状況で人間がよく使う非包括的または双対的戦略の複雑さに苦しむ。
タスク固有の複雑さのため、最先端強化学習(RL)手法は不適当である。
対照的に、デモから学ぶには、かなりの数の専門家によるデモを集める必要がある。
その代わり、人間の両手操作戦略にインスパイアされ、両手で物体を安定させ、リオリエントに調整する。
特に,2つの協調したポリシーを利用する学習ベースのアプローチであるCOMBO-Grasp(Constraint-based Manipulation for Bimanual Occluded Grasping)を導入する。
重要な貢献は、価値関数に基づく政策調整である。
具体的には、把握ポリシのRLトレーニングにおいて、制約ポリシの出力は、共同で訓練された値関数からの勾配によって洗練され、双方向調整とタスクパフォーマンスが向上する。
最後に、COMBO-Graspは、実環境におけるポイントクラウドベースのポリシーを効果的に展開するために、教師によるポリシー蒸留を採用している。
COMBO-Graspは,シミュレーション環境と実環境の両方において未確認オブジェクトへの一般化を成功させながら,競合するベースラインアプローチと比較してタスク成功率を大幅に向上することを示した。
関連論文リスト
- MENTOR: Guiding Hierarchical Reinforcement Learning with Human Feedback and Dynamic Distance Constraint [36.970138281579686]
階層的強化学習(HRL)は、タスクをサブゴールに分割し、それらを順次完了させる階層的枠組みを使用する。
現在の手法は、安定した学習プロセスを保証するための適切なサブゴールを見つけるのに苦労している。
本稿では,人間のフィードバックとダイナミック距離制約を取り入れた汎用階層型強化学習フレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-22T03:11:09Z) - Integrating DeepRL with Robust Low-Level Control in Robotic Manipulators for Non-Repetitive Reaching Tasks [0.24578723416255746]
ロボット工学では、現代の戦略は学習に基づくもので、複雑なブラックボックスの性質と解釈可能性の欠如が特徴である。
本稿では, 深部強化学習(DRL)に基づく衝突のない軌道プランナと, 自動調整型低レベル制御戦略を統合することを提案する。
論文 参考訳(メタデータ) (2024-02-04T15:54:03Z) - Coherent Soft Imitation Learning [17.345411907902932]
模倣学習法は、政策の行動クローニング(BC)や報酬の逆強化学習(IRL)を通じて専門家から学ぶ。
この研究は、BCとIRLの両方の強度を捉える模倣法に由来する。
論文 参考訳(メタデータ) (2023-05-25T21:54:22Z) - CRISP: Curriculum Inducing Primitive Informed Subgoal Prediction for Hierarchical Reinforcement Learning [25.84621883831624]
我々は、低レベルのプリミティブを進化させるための達成可能なサブゴールのカリキュラムを生成する新しいHRLアルゴリズムであるCRISPを提案する。
CRISPは低レベルのプリミティブを使用して、少数の専門家によるデモンストレーションで定期的にデータレバーベリングを行う。
実世界のシナリオにおいてCRISPは印象的な一般化を示す。
論文 参考訳(メタデータ) (2023-04-07T08:22:50Z) - Planning to Practice: Efficient Online Fine-Tuning by Composing Goals in
Latent Space [76.46113138484947]
汎用ロボットは、現実世界の非構造環境において困難なタスクを完了するために、多様な行動レパートリーを必要とする。
この問題に対処するため、目標条件強化学習は、コマンド上の幅広いタスクの目標に到達可能なポリシーを取得することを目的としている。
本研究では,長期的課題に対する目標条件付き政策を実践的に訓練する手法であるPlanning to Practiceを提案する。
論文 参考訳(メタデータ) (2022-05-17T06:58:17Z) - A Regularized Implicit Policy for Offline Reinforcement Learning [54.7427227775581]
オフラインの強化学習は、環境とのさらなるインタラクションなしに、固定データセットから学習を可能にする。
フレキシブルだが十分に調整された完全実装ポリシーの学習を支援するフレームワークを提案する。
D4RLデータセットの実験とアブレーション研究により、我々のフレームワークとアルゴリズム設計の有効性が検証された。
論文 参考訳(メタデータ) (2022-02-19T20:22:04Z) - Object-Aware Regularization for Addressing Causal Confusion in Imitation
Learning [131.1852444489217]
本稿では,オブジェクト認識方式で模倣ポリシーを標準化する手法として,オブジェクト認識型RegularizatiOn(OREO)を提案する。
我々の主な考えは、政策が専門家の行動と強く相関するニュアンス変数を悪用することを防ぐために、政策が全ての意味オブジェクトに均一に出席することを奨励することである。
論文 参考訳(メタデータ) (2021-10-27T01:56:23Z) - Composable Learning with Sparse Kernel Representations [110.19179439773578]
再生カーネルヒルベルト空間におけるスパース非パラメトリック制御系を学習するための強化学習アルゴリズムを提案する。
正規化アドバンテージ関数を通じてステートアクション関数の構造を付与することにより、このアプローチのサンプル複雑さを改善します。
2次元環境下を走行しながらレーザースキャナーを搭載したロボットの複数シミュレーションにおける障害物回避政策の学習に関するアルゴリズムの性能を実証する。
論文 参考訳(メタデータ) (2021-03-26T13:58:23Z) - PLAS: Latent Action Space for Offline Reinforcement Learning [18.63424441772675]
オフライン強化学習の目標は、環境とのさらなる相互作用なしに、固定データセットからポリシーを学ぶことである。
既存のオフプライシアルゴリズムでは、アウト・オブ・ディストリビューションアクションによる外挿エラーによる静的データセットのパフォーマンスが制限されている。
提案手法は,各種の連続制御タスクと異なる種類のデータセットに対して,一貫して競合性能を提供することを示す。
論文 参考訳(メタデータ) (2020-11-14T03:38:38Z) - Discrete Action On-Policy Learning with Action-Value Critic [72.20609919995086]
離散的な行動空間における強化学習(RL)は、実世界の応用では至るところで行われているが、その複雑さは行動空間次元とともに指数関数的に増大する。
我々は,行動値関数を推定し,相関行動に適用し,これらの評価値を組み合わせて勾配推定の分散を制御する。
これらの取り組みにより、分散制御技術に頼って、関連するRLアルゴリズムを実証的に上回る、新たな離散的なRLアルゴリズムが実現される。
論文 参考訳(メタデータ) (2020-02-10T04:23:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。