論文の概要: LowRA: Accurate and Efficient LoRA Fine-Tuning of LLMs under 2 Bits
- arxiv url: http://arxiv.org/abs/2502.08141v1
- Date: Wed, 12 Feb 2025 05:48:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-13 13:49:21.022129
- Title: LowRA: Accurate and Efficient LoRA Fine-Tuning of LLMs under 2 Bits
- Title(参考訳): LowRA: 2ビット以下のLLMの高精度かつ効率的なLoRA微細調整
- Authors: Zikai Zhou, Qizheng Zhang, Hermann Kumbong, Kunle Olukotun,
- Abstract要約: LowRAは、LoRAの微調整を可能にする最初のフレームワークである。
我々は,LowRAが2ビット以上の性能精度のトレードオフを達成し,最大1.15ビットまで精度を保ち,メモリ使用量を最大50%削減することを示した。
- 参考スコア(独自算出の注目度): 1.4311970001759078
- License:
- Abstract: Fine-tuning large language models (LLMs) is increasingly costly as models scale to hundreds of billions of parameters, and even parameter-efficient fine-tuning (PEFT) methods like LoRA remain resource-intensive. We introduce LowRA, the first framework to enable LoRA fine-tuning below 2 bits per parameter with minimal performance loss. LowRA optimizes fine-grained quantization - mapping, threshold selection, and precision assignment - while leveraging efficient CUDA kernels for scalable deployment. Extensive evaluations across 4 LLMs and 4 datasets show that LowRA achieves a superior performance-precision trade-off above 2 bits and remains accurate down to 1.15 bits, reducing memory usage by up to 50%. Our results highlight the potential of ultra-low-bit LoRA fine-tuning for resource-constrained environments.
- Abstract(参考訳): モデルが数十億のパラメータにスケールし、LoRAのようなパラメータ効率のよい細調整(PEFT)方法さえもリソース集約型のままであるため、細調整の大型言語モデル(LLM)はますますコストがかかる。
性能損失を最小限に抑えながらパラメータあたり2ビット以下でLoRAの微調整を可能にする最初のフレームワークであるLowRAを紹介した。
LowRAは、スケーラブルなデプロイメントに効率的なCUDAカーネルを活用しながら、詳細な量子化(マッピング、しきい値の選択、精度割り当て)を最適化する。
4つのLLMと4つのデータセットにわたる大規模な評価は、LowRAが2ビット以上のパフォーマンス精度のトレードオフを達成し、1.15ビットまで精度を保ち、メモリ使用量を最大50%削減していることを示している。
本結果は,資源制約環境における超低ビットLORA微調整の可能性を強調した。
関連論文リスト
- Dynamic Low-Rank Sparse Adaptation for Large Language Models [54.1231638555233]
Low-rank Sparse Adaptation (LoSA)は、低ランク適応をsparse LLM sparsityにシームレスに統合する新しい手法である。
LoSAは、微調整中に対応するスパース重みに基づいてLoRA結果を動的に分散する。
LoSAは、追加の推論負荷を伴わずに、スパースLSMの有効性を数時間で効果的に向上させることができる。
論文 参考訳(メタデータ) (2025-02-20T18:37:32Z) - LoRA-Mini : Adaptation Matrices Decomposition and Selective Training [2.0670689746336]
Low-Rank Adaptation (LoRA)は、トレーニング可能なパラメータの数を減らし、パラメータ効率の良い微調整を可能にする、有望なソリューションとして登場した。
低ランク行列を4つに分割することでパラメータ効率を向上させるLoRAを最適化したLoRA-Miniを提案する。
このアプローチは、標準のLoRAに匹敵するパフォーマンスレベルを維持しながら、トレーニング可能なパラメータの数に対して、標準のLoRAと比較して最大20倍の削減を実現している。
論文 参考訳(メタデータ) (2024-11-24T12:21:14Z) - LoRA Done RITE: Robust Invariant Transformation Equilibration for LoRA Optimization [78.93425154518705]
低ランク適応 (LoRA) は、メモリ要求を低減し、LLMのパラメータ効率の高い微調整法である。
本稿では,LoRA最適化のための適応行列プレコンディショニング手法であるLoRA-RITEを紹介する。
論文 参考訳(メタデータ) (2024-10-27T22:57:12Z) - Flat-LoRA: Low-Rank Adaption over a Flat Loss Landscape [52.98187034726091]
Low-Rank Adaptation (LoRA) は低ランク行列のみを最適化することでモデルを微調整する効率的な方法である。
ロラ空間に平坦に見える解は、全パラメータ空間に鋭い方向が存在し、一般化性能を損なう可能性がある。
フルパラメータ空間の平坦領域に位置する低ランク適応を求める効率的なアプローチであるFlat-LoRAを提案する。
論文 参考訳(メタデータ) (2024-09-22T11:24:10Z) - LoRA-Pro: Are Low-Rank Adapters Properly Optimized? [121.0693322732454]
LoRAとしても知られる低ランク適応は、基礎モデルのパラメータ効率の細かい調整のための顕著な手法として登場した。
計算効率にもかかわらず、LoRAは完全な微調整に比べて性能が劣っている。
低ランク行列の勾配を戦略的に調整することでLoRAの性能を向上させる手法であるLoRA-Proを導入する。
論文 参考訳(メタデータ) (2024-07-25T17:57:12Z) - LoRA-GA: Low-Rank Adaptation with Gradient Approximation [5.685201910521295]
微調整された大規模事前訓練モデルは、計算とメモリコストの点で極めて高価である。
LoRAは、パラメータが著しく少ない補助的な低ランクモデルを微調整することで、コスト効率のよい代替手段を提供する。
LoRAは完全な微調整に比べてかなり遅い速度で収束し、全体的な計算能力が向上し、しばしばテスト性能が悪化する。
論文 参考訳(メタデータ) (2024-07-06T08:37:21Z) - Safe LoRA: the Silver Lining of Reducing Safety Risks when Fine-tuning Large Language Models [51.20476412037321]
提案するSafe LoRAは,選択した層からのLoRA重みの投影を安全に整合した部分空間に導入することにより,オリジナルのLoRA実装に対する単純なワンライナーパッチである。
我々の実験は、純粋に悪意のあるデータに対して微調整を行う場合、Safe LoRAは元のアライメントモデルと同様の安全性を保っていることを示した。
論文 参考訳(メタデータ) (2024-05-27T05:04:05Z) - Chain of LoRA: Efficient Fine-tuning of Language Models via Residual
Learning [31.036465632204663]
本稿では,Frank-Wolfeアルゴリズムにインスパイアされた反復最適化フレームワークであるLoRAのChainを紹介する。
計算コストやメモリコストを増大させることなく,COLA が LoRA を一貫して上回ることを示す。
論文 参考訳(メタデータ) (2024-01-08T14:26:49Z) - LoRAPrune: Structured Pruning Meets Low-Rank Parameter-Efficient Fine-Tuning [56.88751562302793]
低ランク適応 (LoRA) が大型言語モデル (LLM) に登場した。
LoRAPruneは、高度にメモリ効率の良い正確な構造化プルーンドモデルを提供する新しいフレームワークである。
LoRAPruneはWikiText2では4.81、TBでは3.46、メモリ使用量は52.6%減少している。
論文 参考訳(メタデータ) (2023-05-28T15:15:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。