論文の概要: LoRA-Mini : Adaptation Matrices Decomposition and Selective Training
- arxiv url: http://arxiv.org/abs/2411.15804v1
- Date: Sun, 24 Nov 2024 12:21:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-26 14:24:46.669426
- Title: LoRA-Mini : Adaptation Matrices Decomposition and Selective Training
- Title(参考訳): LoRA-Mini : 適応行列分解と選択学習
- Authors: Ayush Singh, Rajdeep Aher, Shivank Garg,
- Abstract要約: Low-Rank Adaptation (LoRA)は、トレーニング可能なパラメータの数を減らし、パラメータ効率の良い微調整を可能にする、有望なソリューションとして登場した。
低ランク行列を4つに分割することでパラメータ効率を向上させるLoRAを最適化したLoRA-Miniを提案する。
このアプローチは、標準のLoRAに匹敵するパフォーマンスレベルを維持しながら、トレーニング可能なパラメータの数に対して、標準のLoRAと比較して最大20倍の削減を実現している。
- 参考スコア(独自算出の注目度): 2.0670689746336
- License:
- Abstract: The rapid advancements in large language models (LLMs) have revolutionized natural language processing, creating an increased need for efficient, task-specific fine-tuning methods. Traditional fine-tuning of LLMs involves updating a large number of parameters, which is computationally expensive and memory-intensive. Low-Rank Adaptation (LoRA) has emerged as a promising solution, enabling parameter-efficient fine-tuning by reducing the number of trainable parameters. However, while LoRA reduces the number of trainable parameters, LoRA modules still create significant storage challenges. We propose LoRA-Mini, an optimized adaptation of LoRA that improves parameter efficiency by splitting low-rank matrices into four parts, with only the two inner matrices being trainable. This approach achieves upto a 20x reduction compared to standard LoRA in the number of trainable parameters while preserving performance levels comparable to standard LoRA, addressing both computational and storage efficiency in LLM fine-tuning.
- Abstract(参考訳): 大規模言語モデル(LLM)の急速な進歩は自然言語処理に革命をもたらし、効率的なタスク固有の微調整手法の必要性が高まった。
LLMの従来の微調整には、計算コストが高く、メモリ集約的な大量のパラメータを更新する必要があった。
Low-Rank Adaptation (LoRA)は、トレーニング可能なパラメータの数を減らし、パラメータ効率の良い微調整を可能にする、有望なソリューションとして登場した。
しかし、LoRAはトレーニング可能なパラメータの数を減らしているが、LoRAモジュールは依然として大きなストレージ課題を生んでいる。
低ランク行列を4つの部分に分割することでパラメータ効率を向上させるLoRAを最適化したLoRA-Miniを提案する。
このアプローチは、LLMファインチューニングにおける計算効率と記憶効率の両方に対処し、標準のLoRAに匹敵する性能レベルを維持しながら、トレーニング可能なパラメータの数に対して、標準のLoRAと比較して最大20倍の削減を実現している。
関連論文リスト
- LoRA Done RITE: Robust Invariant Transformation Equilibration for LoRA Optimization [78.93425154518705]
低ランク適応 (LoRA) は、メモリ要求を低減し、LLMのパラメータ効率の高い微調整法である。
本稿では,LoRA最適化のための適応行列プレコンディショニング手法であるLoRA-RITEを紹介する。
論文 参考訳(メタデータ) (2024-10-27T22:57:12Z) - Less is More: Extreme Gradient Boost Rank-1 Adaption for Efficient Finetuning of LLMs [75.11449420928139]
微調整型大規模言語モデル(LLM)は、訓練済みモデルを下流タスクに適応させる上で重要な技術となっている。
Low-Rank Adaptation (LoRA) は有望な解決法として登場したが、低ランク適応の実用性能と理論的最適性の間にはギャップがある。
本稿では,このギャップを埋める新しいフレームワークであるeXtreme Gradient Boosting LoRAを提案する。
論文 参考訳(メタデータ) (2024-10-25T17:07:13Z) - LoRTA: Low Rank Tensor Adaptation of Large Language Models [70.32218116940393]
Low Rank Adaptation (LoRA) は、下流タスクのための大規模な事前学習モデルに効果的に適応する、PEFT (Efficient Fine Tuning) 手法として人気がある。
モデル更新に低階テンソルパラメトリゼーションを用いる新しい手法を提案する。
提案手法は,大規模言語モデルの微調整に有効であり,比較性能を維持しつつ,パラメータ数の大幅な削減を実現している。
論文 参考訳(メタデータ) (2024-10-05T06:59:50Z) - Flat-LoRA: Low-Rank Adaption over a Flat Loss Landscape [52.98187034726091]
Low-Rank Adaptation (LoRA) は低ランク行列のみを最適化することでモデルを微調整する効率的な方法である。
ロラ空間に平坦に見える解は、全パラメータ空間に鋭い方向が存在し、一般化性能を損なう可能性がある。
フルパラメータ空間の平坦領域に位置する低ランク適応を求める効率的なアプローチであるFlat-LoRAを提案する。
論文 参考訳(メタデータ) (2024-09-22T11:24:10Z) - LoRA-XS: Low-Rank Adaptation with Extremely Small Number of Parameters [11.23006032094776]
トレーニング可能なパラメータを格段に削減し,優れた性能と競争性能を示すLoRA-XSを提案する。
LoRA-XSは、LoRAと比較して、トレーニング可能なパラメータを7Bモデルで100倍以上削減する。
論文 参考訳(メタデータ) (2024-05-27T19:07:13Z) - MoRA: High-Rank Updating for Parameter-Efficient Fine-Tuning [105.11844150736536]
低ランク適応は、大規模言語モデルのためのパラメータ効率の良い微調整法として人気がある。
トレーニング可能なパラメータ数を同じ数に保ちながら、高階更新を実現するために2乗行列を用いるMoRAと呼ばれる新しい手法を提案する。
本手法はメモリ集約型タスクではLoRAより優れ,他のタスクでは同等のパフォーマンスを実現している。
論文 参考訳(メタデータ) (2024-05-20T15:48:32Z) - MELoRA: Mini-Ensemble Low-Rank Adapters for Parameter-Efficient Fine-Tuning [71.50432879573614]
低ランク適応 (LoRA) は、適応過程が本質的に低次元であるという考えに基づいている。
我々は、より高階を維持しながらトレーニング可能なパラメータを少なくするミニアンサンブルな低ランクアダプタMELoRAを提案する。
実験結果から, 自然言語理解タスクの8倍のトレーニングパラメータ, 続くタスクの36倍のトレーニングパラメータが得られた。
論文 参考訳(メタデータ) (2024-02-27T07:14:12Z) - PRoLoRA: Partial Rotation Empowers More Parameter-Efficient LoRA [45.38491644250814]
部分回転型低ランク適応(PRoLoRA)は層内共有機構である。
PRoLoRAはその利点を保ち、ピアパラメータ共有手法の欠点を効果的に回避する。
実験によりPRoLoRAのパラメータ効率が著しく向上した。
論文 参考訳(メタデータ) (2024-02-24T13:39:05Z) - Chain of LoRA: Efficient Fine-tuning of Language Models via Residual
Learning [31.036465632204663]
本稿では,Frank-Wolfeアルゴリズムにインスパイアされた反復最適化フレームワークであるLoRAのChainを紹介する。
計算コストやメモリコストを増大させることなく,COLA が LoRA を一貫して上回ることを示す。
論文 参考訳(メタデータ) (2024-01-08T14:26:49Z) - IncreLoRA: Incremental Parameter Allocation Method for
Parameter-Efficient Fine-tuning [15.964205804768163]
IncreLoRAは、トレーニング中にトレーニング可能なパラメータを適応的に追加するインクリメンタルパラメータ割り当て手法である。
我々は,IncreLoRAの有効性を示すため,GLUEの広範な実験を行った。
論文 参考訳(メタデータ) (2023-08-23T10:08:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。