ACCESS : A Benchmark for Abstract Causal Event Discovery and Reasoning
- URL: http://arxiv.org/abs/2502.08148v1
- Date: Wed, 12 Feb 2025 06:19:02 GMT
- Title: ACCESS : A Benchmark for Abstract Causal Event Discovery and Reasoning
- Authors: Vy Vo, Lizhen Qu, Tao Feng, Yuncheng Hua, Xiaoxi Kang, Songhai Fan, Tim Dwyer, Lay-Ki Soon, Gholamreza Haffari,
- Abstract summary: We introduce textttACCESS, a benchmark designed for discovery and reasoning over abstract causal events.<n>We propose a pipeline for identifying abstractions for event generalizations from a large-scale dataset of implicit commonsense causal knowledge.
- Score: 47.540945048737434
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Identifying cause-and-effect relationships is critical to understanding real-world dynamics and ultimately causal reasoning. Existing methods for identifying event causality in NLP, including those based on Large Language Models (LLMs), exhibit difficulties in out-of-distribution settings due to the limited scale and heavy reliance on lexical cues within available benchmarks. Modern benchmarks, inspired by probabilistic causal inference, have attempted to construct causal graphs of events as a robust representation of causal knowledge, where \texttt{CRAB} \citep{romanou2023crab} is one such recent benchmark along this line. In this paper, we introduce \texttt{ACCESS}, a benchmark designed for discovery and reasoning over abstract causal events. Unlike existing resources, \texttt{ACCESS} focuses on causality of everyday life events on the abstraction level. We propose a pipeline for identifying abstractions for event generalizations from \texttt{GLUCOSE} \citep{mostafazadeh-etal-2020-glucose}, a large-scale dataset of implicit commonsense causal knowledge, from which we subsequently extract $1,4$K causal pairs. Our experiments highlight the ongoing challenges of using statistical methods and/or LLMs for automatic abstraction identification and causal discovery in NLP. Nonetheless, we demonstrate that the abstract causal knowledge provided in \texttt{ACCESS} can be leveraged for enhancing QA reasoning performance in LLMs.
Related papers
- Causal Prompting for Implicit Sentiment Analysis with Large Language Models [21.39152516811571]
Implicit Sentiment Analysis (ISA) aims to infer sentiment that is implied rather than explicitly stated.<n>Recent prompting-based methods using Large Language Models (LLMs) have shown promise in ISA.<n>We propose CAPITAL, a causal prompting framework that incorporates front-door adjustment into CoT reasoning.
arXiv Detail & Related papers (2025-07-01T03:01:09Z) - Zero-Shot Event Causality Identification via Multi-source Evidence Fuzzy Aggregation with Large Language Models [11.541829239773643]
Event Causality Identification (ECI) aims to detect causal relationships between events in textual contexts.<n>Existing ECI models predominantly rely on supervised methodologies, suffering from dependence on large-scale annotated data.<n>We propose MEFA, a novel zero-shot framework based on Multi-source Evidence Fuzzy Aggregation.
arXiv Detail & Related papers (2025-06-06T01:56:05Z) - Causal Cartographer: From Mapping to Reasoning Over Counterfactual Worlds [9.153187514369849]
Causal world models can answer counterfactual questions about an environment of interest.<n>It requires understanding the underlying causes behind chains of events and conducting causal inference for unseen distributions.<n>We show that our approach can extract causal knowledge while reducing inference costs and spurious correlations.
arXiv Detail & Related papers (2025-05-20T14:14:05Z) - DeCaFlow: A Deconfounding Causal Generative Model [58.411886466157185]
Causal generative models (CGMs) have recently emerged as capable approaches to simulate the causal mechanisms generating our observations.
We introduce DeCaFlow, a CGM that accounts for hidden confounders in a single amortized training process using only observational data and the causal graph.
For the first time to our knowledge, we show that a confounded counterfactual query is identifiable, and thus solvable by DeCaFlow.
arXiv Detail & Related papers (2025-03-19T11:14:16Z) - Discovery of Maximally Consistent Causal Orders with Large Language Models [0.8192907805418583]
Causal discovery is essential for understanding complex systems.<n>Traditional methods often rely on strong, untestable assumptions.<n>We propose a novel method to derive a class of acyclic tournaments.
arXiv Detail & Related papers (2024-12-18T16:37:51Z) - Failure Modes of LLMs for Causal Reasoning on Narratives [51.19592551510628]
We investigate the interaction between world knowledge and logical reasoning.<n>We find that state-of-the-art large language models (LLMs) often rely on superficial generalizations.<n>We show that simple reformulations of the task can elicit more robust reasoning behavior.
arXiv Detail & Related papers (2024-10-31T12:48:58Z) - Counterfactual Causal Inference in Natural Language with Large Language Models [9.153187514369849]
We propose an end-to-end causal structure discovery and causal inference method from natural language.
We first use an LLM to extract the instantiated causal variables from text data and build a causal graph.
We then conduct counterfactual inference on the estimated graph.
arXiv Detail & Related papers (2024-10-08T21:53:07Z) - Large Language Models for Constrained-Based Causal Discovery [4.858756226945995]
Causality is essential for understanding complex systems, such as the economy, the brain, and the climate.
This work explores the capabilities of Large Language Models (LLMs) as an alternative to domain experts for causal graph generation.
arXiv Detail & Related papers (2024-06-11T15:45:24Z) - On the Identification of Temporally Causal Representation with Instantaneous Dependence [50.14432597910128]
Temporally causal representation learning aims to identify the latent causal process from time series observations.
Most methods require the assumption that the latent causal processes do not have instantaneous relations.
We propose an textbfIDentification framework for instantanetextbfOus textbfLatent dynamics.
arXiv Detail & Related papers (2024-05-24T08:08:05Z) - Cause and Effect: Can Large Language Models Truly Understand Causality? [1.2334534968968969]
This research proposes a novel architecture called Context Aware Reasoning Enhancement with Counterfactual Analysis(CARE CA) framework.
The proposed framework incorporates an explicit causal detection module with ConceptNet and counterfactual statements, as well as implicit causal detection through Large Language Models.
The knowledge from ConceptNet enhances the performance of multiple causal reasoning tasks such as causal discovery, causal identification and counterfactual reasoning.
arXiv Detail & Related papers (2024-02-28T08:02:14Z) - Zero-shot Causal Graph Extrapolation from Text via LLMs [50.596179963913045]
We evaluate the ability of large language models (LLMs) to infer causal relations from natural language.
LLMs show competitive performance in a benchmark of pairwise relations without needing (explicit) training samples.
We extend our approach to extrapolating causal graphs through iterated pairwise queries.
arXiv Detail & Related papers (2023-12-22T13:14:38Z) - CLadder: Assessing Causal Reasoning in Language Models [82.8719238178569]
We investigate whether large language models (LLMs) can coherently reason about causality.
We propose a new NLP task, causal inference in natural language, inspired by the "causal inference engine" postulated by Judea Pearl et al.
arXiv Detail & Related papers (2023-12-07T15:12:12Z) - Inducing Causal Structure for Abstractive Text Summarization [76.1000380429553]
We introduce a Structural Causal Model (SCM) to induce the underlying causal structure of the summarization data.
We propose a Causality Inspired Sequence-to-Sequence model (CI-Seq2Seq) to learn the causal representations that can mimic the causal factors.
Experimental results on two widely used text summarization datasets demonstrate the advantages of our approach.
arXiv Detail & Related papers (2023-08-24T16:06:36Z) - Active Bayesian Causal Inference [72.70593653185078]
We propose Active Bayesian Causal Inference (ABCI), a fully-Bayesian active learning framework for integrated causal discovery and reasoning.
ABCI jointly infers a posterior over causal models and queries of interest.
We show that our approach is more data-efficient than several baselines that only focus on learning the full causal graph.
arXiv Detail & Related papers (2022-06-04T22:38:57Z) - Improving Event Causality Identification via Self-Supervised
Representation Learning on External Causal Statement [17.77752074834281]
We propose CauSeRL, which leverages external causal statements for event causality identification.
First of all, we design a self-supervised framework to learn context-specific causal patterns from external causal statements.
We adopt a contrastive transfer strategy to incorporate the learned context-specific causal patterns into the target ECI model.
arXiv Detail & Related papers (2021-06-03T07:50:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.