Force Matching with Relativistic Constraints: A Physics-Inspired Approach to Stable and Efficient Generative Modeling
- URL: http://arxiv.org/abs/2502.08150v1
- Date: Wed, 12 Feb 2025 06:30:01 GMT
- Title: Force Matching with Relativistic Constraints: A Physics-Inspired Approach to Stable and Efficient Generative Modeling
- Authors: Yang Cao, Bo Chen, Xiaoyu Li, Yingyu Liang, Zhizhou Sha, Zhenmei Shi, Zhao Song, Mingda Wan,
- Abstract summary: We introduce Force Matching (ForM), a framework for generative modeling that incorporates special relativistic mechanics.
ForM imposes a velocity constraint, ensuring that sample velocities remain bounded within a constant limit.
We show that ForM provides a promising pathway toward achieving stable, efficient, and flexible generative processes.
- Score: 26.145559807686706
- License:
- Abstract: This paper introduces Force Matching (ForM), a novel framework for generative modeling that represents an initial exploration into leveraging special relativistic mechanics to enhance the stability of the sampling process. By incorporating the Lorentz factor, ForM imposes a velocity constraint, ensuring that sample velocities remain bounded within a constant limit. This constraint serves as a fundamental mechanism for stabilizing the generative dynamics, leading to a more robust and controlled sampling process. We provide a rigorous theoretical analysis demonstrating that the velocity constraint is preserved throughout the sampling procedure within the ForM framework. To validate the effectiveness of our approach, we conduct extensive empirical evaluations. On the \textit{half-moons} dataset, ForM significantly outperforms baseline methods, achieving the lowest Euclidean distance loss of \textbf{0.714}, in contrast to vanilla first-order flow matching (5.853) and first- and second-order flow matching (5.793). Additionally, we perform an ablation study to further investigate the impact of our velocity constraint, reaffirming the superiority of ForM in stabilizing the generative process. The theoretical guarantees and empirical results underscore the potential of integrating special relativity principles into generative modeling. Our findings suggest that ForM provides a promising pathway toward achieving stable, efficient, and flexible generative processes. This work lays the foundation for future advancements in high-dimensional generative modeling, opening new avenues for the application of physical principles in machine learning.
Related papers
- Stochastic Control for Fine-tuning Diffusion Models: Optimality, Regularity, and Convergence [11.400431211239958]
Diffusion models have emerged as powerful tools for generative modeling.
We propose a control framework for fine-tuning diffusion models.
We show that PI-FT achieves global convergence at a linear rate.
arXiv Detail & Related papers (2024-12-24T04:55:46Z) - Conditional Lagrangian Wasserstein Flow for Time Series Imputation [3.914746375834628]
We propose a novel method for time series imputation called Conditional Lagrangian Wasserstein Flow.
The proposed method leverages the (conditional) optimal transport theory to learn the probability flow in a simulation-free manner.
The experimental results on the real-word datasets show that the proposed method achieves competitive performance on time series imputation.
arXiv Detail & Related papers (2024-10-10T02:46:28Z) - Partially Observed Trajectory Inference using Optimal Transport and a Dynamics Prior [2.7255073299359154]
Trajectory inference seeks to recover the temporal dynamics of a population from snapshots of its temporal marginals.
Prior works under a differential equation (SDE) model with a gradient-driven drift in the observed space.
We introduce the PO-MFL algorithm to solve this latent trajectory inference problem.
arXiv Detail & Related papers (2024-06-11T17:21:15Z) - Generative Modeling with Phase Stochastic Bridges [49.4474628881673]
Diffusion models (DMs) represent state-of-the-art generative models for continuous inputs.
We introduce a novel generative modeling framework grounded in textbfphase space dynamics
Our framework demonstrates the capability to generate realistic data points at an early stage of dynamics propagation.
arXiv Detail & Related papers (2023-10-11T18:38:28Z) - Learning Energy-Based Prior Model with Diffusion-Amortized MCMC [89.95629196907082]
Common practice of learning latent space EBMs with non-convergent short-run MCMC for prior and posterior sampling is hindering the model from further progress.
We introduce a simple but effective diffusion-based amortization method for long-run MCMC sampling and develop a novel learning algorithm for the latent space EBM based on it.
arXiv Detail & Related papers (2023-10-05T00:23:34Z) - Provable Guarantees for Generative Behavior Cloning: Bridging Low-Level
Stability and High-Level Behavior [51.60683890503293]
We propose a theoretical framework for studying behavior cloning of complex expert demonstrations using generative modeling.
We show that pure supervised cloning can generate trajectories matching the per-time step distribution of arbitrary expert trajectories.
arXiv Detail & Related papers (2023-07-27T04:27:26Z) - Sampling with Mollified Interaction Energy Descent [57.00583139477843]
We present a new optimization-based method for sampling called mollified interaction energy descent (MIED)
MIED minimizes a new class of energies on probability measures called mollified interaction energies (MIEs)
We show experimentally that for unconstrained sampling problems our algorithm performs on par with existing particle-based algorithms like SVGD.
arXiv Detail & Related papers (2022-10-24T16:54:18Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
We propose a novel and general theoretical scheme for a non-decreasing performance guarantee of model-based RL (MBRL)
Our follow-up derived bounds reveal the relationship between model shifts and performance improvement.
A further example demonstrates that learning models from a dynamically-varying number of explorations benefit the eventual returns.
arXiv Detail & Related papers (2022-10-15T17:57:43Z) - Guaranteed Conservation of Momentum for Learning Particle-based Fluid
Dynamics [96.9177297872723]
We present a novel method for guaranteeing linear momentum in learned physics simulations.
We enforce conservation of momentum with a hard constraint, which we realize via antisymmetrical continuous convolutional layers.
In combination, the proposed method allows us to increase the physical accuracy of the learned simulator substantially.
arXiv Detail & Related papers (2022-10-12T09:12:59Z) - Optimal transport for causal discovery [13.38095181298957]
We provide a novel dynamical-system view of Functional Causal Models (FCMs)
We then propose a new framework for identifying causal direction in the bivariate case.
Our method demonstrated state-of-the-art results on both synthetic and causal discovery benchmark datasets.
arXiv Detail & Related papers (2022-01-23T21:09:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.