論文の概要: Model-Free Counterfactual Subset Selection at Scale
- arxiv url: http://arxiv.org/abs/2502.08326v1
- Date: Wed, 12 Feb 2025 11:48:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-13 13:48:26.413580
- Title: Model-Free Counterfactual Subset Selection at Scale
- Title(参考訳): スケールにおけるモデルフリーな非現実的サブセット選択
- Authors: Minh Hieu Nguyen, Viet Hung Doan, Anh Tuan Nguyen, Jun Jo, Quoc Viet Hung Nguyen,
- Abstract要約: ストリーミングの説明は、データセット全体の永続的なストレージを必要とせずに、適応的でリアルタイムな洞察を提供する。
我々のアルゴリズムはストリーミング設定において効率よく動作し、アイテムごとの更新複雑性を$O(log k)$に維持する。
実世界のデータセットと合成データセットの両方に対する実証的な評価は、ベースライン法よりも優れた性能を示す。
- 参考スコア(独自算出の注目度): 11.646993755965006
- License:
- Abstract: Ensuring transparency in AI decision-making requires interpretable explanations, particularly at the instance level. Counterfactual explanations are a powerful tool for this purpose, but existing techniques frequently depend on synthetic examples, introducing biases from unrealistic assumptions, flawed models, or skewed data. Many methods also assume full dataset availability, an impractical constraint in real-time environments where data flows continuously. In contrast, streaming explanations offer adaptive, real-time insights without requiring persistent storage of the entire dataset. This work introduces a scalable, model-free approach to selecting diverse and relevant counterfactual examples directly from observed data. Our algorithm operates efficiently in streaming settings, maintaining $O(\log k)$ update complexity per item while ensuring high-quality counterfactual selection. Empirical evaluations on both real-world and synthetic datasets demonstrate superior performance over baseline methods, with robust behavior even under adversarial conditions.
- Abstract(参考訳): AI意思決定における透明性の確保には、特にインスタンスレベルでの解釈可能な説明が必要である。
対物的説明は、この目的のために強力なツールであるが、既存のテクニックは、非現実的な仮定、欠陥のあるモデル、または歪んだデータからのバイアスを導入して、しばしば合成例に依存する。
多くのメソッドは、データが継続的に流れるリアルタイム環境における非現実的な制約である、完全なデータセットの可用性も前提としている。
対照的に、ストリーミングの説明は、データセット全体の永続的なストレージを必要としない、適応的でリアルタイムな洞察を提供する。
この研究は、観測データから直接多様で関連するカウンターファクト例を選択するためのスケーラブルでモデルフリーなアプローチを導入している。
提案アルゴリズムは,高品質な逆ファクト選択を確保しつつ,アイテムごとのO(\log k)$更新の複雑さを保ちながら,ストリーミング設定において効率よく動作する。
実世界のデータセットと合成データセットの両方に対する実証的な評価は、逆条件下であっても頑健な振る舞いを持つベースライン法よりも優れた性能を示す。
関連論文リスト
- Testing Generalizability in Causal Inference [3.547529079746247]
機械学習アルゴリズムの一般化性を統計的に評価するための公式な手続きは存在しない。
本稿では,因果推論設定におけるモデル一般化可能性を評価するための体系的かつ定量的なフレームワークを提案する。
実データに基づくシミュレーションにより,本手法はより現実的な評価を確実にする。
論文 参考訳(メタデータ) (2024-11-05T11:44:00Z) - How to Leverage Diverse Demonstrations in Offline Imitation Learning [39.24627312800116]
不完全な実演を伴うオフライン模倣学習(IL)は、専門家データの不足により注目を集めている。
本稿では, 結果の状態に基づいて正の挙動を識別する, 単純で効果的なデータ選択手法を提案する。
次に、専門家と選択したデータを正しく活用できる軽量な行動クローニングアルゴリズムを考案する。
論文 参考訳(メタデータ) (2024-05-24T04:56:39Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
カラムワイズモデルを適応的かつ自動的に構成するための一般化反復計算フレームワークを提案する。
既製の学習者,シミュレータ,インターフェースを備えた具体的な実装を提供する。
論文 参考訳(メタデータ) (2022-06-15T19:10:35Z) - Model-based Offline Imitation Learning with Non-expert Data [7.615595533111191]
本稿では,最適条件と最適条件の両方で収集されたデータセットを活用する,スケーラブルなモデルベースオフライン模倣学習アルゴリズムフレームワークを提案する。
提案手法は, シミュレーションされた連続制御領域上での低データ構造における振舞いクローンよりも優れることを示す。
論文 参考訳(メタデータ) (2022-06-11T13:08:08Z) - MACE: An Efficient Model-Agnostic Framework for Counterfactual
Explanation [132.77005365032468]
MACE(Model-Agnostic Counterfactual Explanation)の新たな枠組みを提案する。
MACE法では, 優れた反実例を見つけるための新しいRL法と, 近接性向上のための勾配のない降下法を提案する。
公開データセットの実験は、有効性、空間性、近接性を向上して検証する。
論文 参考訳(メタデータ) (2022-05-31T04:57:06Z) - CAFE: Learning to Condense Dataset by Aligning Features [72.99394941348757]
本稿ではCAFE(Aligning features)によるCondenseデータセットの新しいスキームを提案する。
このアプローチの核心は、さまざまなスケールにわたる実データと合成データから機能を整合させる効果的な戦略です。
提案したCAFEを様々なデータセットで検証し,概ね最先端技術であることを示す。
論文 参考訳(メタデータ) (2022-03-03T05:58:49Z) - Training Deep Normalizing Flow Models in Highly Incomplete Data
Scenarios with Prior Regularization [13.985534521589257]
ハイパウシティシナリオにおけるデータ分布の学習を容易にする新しいフレームワークを提案する。
提案手法は,不完全データから学習過程を協調最適化タスクとして行うことに由来する。
論文 参考訳(メタデータ) (2021-04-03T20:57:57Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
観察ifoからの模倣学習において、学習エージェントは、実演者の生成した制御信号にアクセスせずに、実演行動の観察のみを用いて実演エージェントを模倣しようとする。
近年、逆模倣学習に基づく手法は、ifO問題に対する最先端のパフォーマンスをもたらすが、データ非効率でモデルなしの強化学習アルゴリズムに依存するため、サンプルの複雑さに悩まされることが多い。
この問題は、サンプルの収集が時間、エネルギー、およびリスクの面で高いコストを被る可能性がある現実世界の設定に展開することは非現実的です。
よりデータ効率の高いifOアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-31T23:46:32Z) - Generative Counterfactuals for Neural Networks via Attribute-Informed
Perturbation [51.29486247405601]
AIP(Attribute-Informed Perturbation)の提案により,生データインスタンスの反事実を生成するフレームワークを設計する。
異なる属性を条件とした生成モデルを利用することで、所望のラベルとの反事実を効果的かつ効率的に得ることができる。
実世界のテキストや画像に対する実験結果から, 設計したフレームワークの有効性, サンプル品質, および効率が示された。
論文 参考訳(メタデータ) (2021-01-18T08:37:13Z) - Causal Feature Selection for Algorithmic Fairness [61.767399505764736]
データ管理の統合コンポーネントにおける公平性について検討する。
本稿では,データセットの公平性を保証する特徴のサブコレクションを同定する手法を提案する。
論文 参考訳(メタデータ) (2020-06-10T20:20:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。