論文の概要: Testing Generalizability in Causal Inference
- arxiv url: http://arxiv.org/abs/2411.03021v1
- Date: Tue, 05 Nov 2024 11:44:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-28 17:07:44.595601
- Title: Testing Generalizability in Causal Inference
- Title(参考訳): 因果推論におけるテストの一般化可能性
- Authors: Daniel de Vassimon Manela, Linying Yang, Robin J. Evans,
- Abstract要約: 機械学習アルゴリズムの一般化性を統計的に評価するための公式な手続きは存在しない。
本稿では,因果推論設定におけるモデル一般化可能性を評価するための体系的かつ定量的なフレームワークを提案する。
実データに基づくシミュレーションにより,本手法はより現実的な評価を確実にする。
- 参考スコア(独自算出の注目度): 3.547529079746247
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Ensuring robust model performance across diverse real-world scenarios requires addressing both transportability across domains with covariate shifts and extrapolation beyond observed data ranges. However, there is no formal procedure for statistically evaluating generalizability in machine learning algorithms, particularly in causal inference. Existing methods often rely on arbitrary metrics like AUC or MSE and focus predominantly on toy datasets, providing limited insights into real-world applicability. To address this gap, we propose a systematic and quantitative framework for evaluating model generalizability under covariate distribution shifts, specifically within causal inference settings. Our approach leverages the frugal parameterization, allowing for flexible simulations from fully and semi-synthetic benchmarks, offering comprehensive evaluations for both mean and distributional regression methods. By basing simulations on real data, our method ensures more realistic evaluations, which is often missing in current work relying on simplified datasets. Furthermore, using simulations and statistical testing, our framework is robust and avoids over-reliance on conventional metrics. Grounded in real-world data, it provides realistic insights into model performance, bridging the gap between synthetic evaluations and practical applications.
- Abstract(参考訳): さまざまな実世界のシナリオにまたがって堅牢なモデルパフォーマンスを保証するには、共変量シフトと観測データ範囲を越えた外挿によるドメイン間のトランスポート可能性の両方に対処する必要がある。
しかし、機械学習アルゴリズム、特に因果推論において、統計的に一般化可能性を評価する公式な手順は存在しない。
既存の手法は、しばしばAUCやMSEのような任意のメトリクスに依存し、主におもちゃのデータセットに焦点を合わせ、現実世界の応用可能性に関する限られた洞察を提供する。
このギャップに対処するために、共変量分布シフト、特に因果推論設定におけるモデル一般化可能性を評価するための体系的かつ定量的なフレームワークを提案する。
提案手法はフラゲパラメータ化を利用して,完全および半合成ベンチマークからのフレキシブルなシミュレーションを可能にし,平均回帰法と分布回帰法を総合的に評価する。
実データに基づくシミュレーションにより,本手法はより現実的な評価を確実にする。
さらに,シミュレーションと統計的テストにより,従来のメトリクスの過度な信頼を回避できる。
実世界のデータに基づいて、モデルパフォーマンスに関する現実的な洞察を提供し、合成評価と実践的応用のギャップを埋める。
関連論文リスト
- Frugal, Flexible, Faithful: Causal Data Simulation via Frengression [4.446798246007668]
本研究は,Fragalパラメータ化の深い生成的実現であるFragressionを紹介する。
frengressionは正確な推定と、時間変化データのフレキシブルで忠実なシミュレーションを提供する。
我々は、この枠組みが因果的マージンモデリングのための生成的アプローチに新たな研究を巻き起こすことを期待している。
論文 参考訳(メタデータ) (2025-08-01T18:43:59Z) - Partial Transportability for Domain Generalization [56.37032680901525]
本稿では, 部分的同定と輸送可能性の理論に基づいて, 対象分布の関数値の有界化に関する新たな結果を紹介する。
我々の貢献は、輸送可能性問題に対する最初の一般的な評価手法を提供することである。
本稿では,スケーラブルな推論を実現するための勾配に基づく最適化手法を提案する。
論文 参考訳(メタデータ) (2025-03-30T22:06:37Z) - Simulation-based Bayesian inference under model misspecification [4.2490325931915285]
本研究は,SBI法が抱える課題を,モデル不特定の下での課題に焦点をあてる。
誤特定の影響を緩和することを目的とした最近の研究を集約する。
一般的なSBI手法の脆弱性と,誤特定・不正な代替手段の有効性を両立させるため,実証実験を行った。
論文 参考訳(メタデータ) (2025-03-16T01:47:19Z) - Meta-Statistical Learning: Supervised Learning of Statistical Inference [59.463430294611626]
この研究は、大きな言語モデル(LLM)の成功を駆動するツールと原則が、分散レベルのタスクに取り組むために再利用可能であることを実証している。
本稿では,統計的推論タスクを教師付き学習問題として再構成するマルチインスタンス学習に触発されたメタ統計学習を提案する。
論文 参考訳(メタデータ) (2025-02-17T18:04:39Z) - Model-free Methods for Event History Analysis and Efficient Adjustment (PhD Thesis) [55.2480439325792]
この論文は、モデルフリーの観点から統一された統計学への独立した貢献のシリーズである。
第1章では、機械学習から予測技術を活用する柔軟なメソッドを定式化するために、モデルフリーの視点をどのように利用できるか、詳しく説明している。
第2章では、あるプロセスの進化が他のプロセスに直接影響されるかどうかを記述した地域独立の概念を研究している。
論文 参考訳(メタデータ) (2025-02-11T19:24:09Z) - On conditional diffusion models for PDE simulations [53.01911265639582]
スパース観測の予測と同化のためのスコアベース拡散モデルについて検討した。
本稿では,予測性能を大幅に向上させる自動回帰サンプリング手法を提案する。
また,条件付きスコアベースモデルに対する新たなトレーニング戦略を提案する。
論文 参考訳(メタデータ) (2024-10-21T18:31:04Z) - MITA: Bridging the Gap between Model and Data for Test-time Adaptation [68.62509948690698]
テスト時間適応(TTA)は、モデルの一般化性を高めるための有望なパラダイムとして登場した。
本稿では,Met-In-The-MiddleをベースとしたMITAを提案する。
論文 参考訳(メタデータ) (2024-10-12T07:02:33Z) - Addressing Misspecification in Simulation-based Inference through Data-driven Calibration [43.811367860375825]
近年の研究では、モデルの不特定がシミュレーションに基づく推論の信頼性を損なうことが示されている。
本研究は, モデル誤特定を克服し, 地上真実パラメータ測定の小さな実世界の校正セットであるロバスト後部推定(ROPE)を導入する。
論文 参考訳(メタデータ) (2024-05-14T16:04:39Z) - Bayesian Nonparametrics Meets Data-Driven Distributionally Robust Optimization [29.24821214671497]
機械学習と統計モデルのトレーニングは、しばしばデータ駆動型リスク基準の最適化を伴う。
ベイズ的非パラメトリック(ディリクレ過程)理論と、スムーズなあいまいさ-逆選好の最近の決定論的モデルを組み合わせた、新しいロバストな基準を提案する。
実用的な実装として、よく知られたディリクレプロセスの表現に基づいて、評価基準の抽出可能な近似を提案し、研究する。
論文 参考訳(メタデータ) (2024-01-28T21:19:15Z) - Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
ニューラルネットワークで実装された効率的かつ効果的な対実的推論のためのフレームワークを提案する。
提案手法は、推定された反事実結果から見つからないデータまでを一般化する能力を高める。
複数のデータセットで実施した実証実験の結果は、我々の理論的な主張に対する説得力のある支持を提供する。
論文 参考訳(メタデータ) (2023-06-09T08:30:51Z) - Learning Robust Statistics for Simulation-based Inference under Model
Misspecification [23.331522354991527]
本稿では,シミュレーションに基づく推論手法の異なるクラスにまたがって機能するモデル不特定性を扱うための,最初の一般的なアプローチを提案する。
提案手法は,モデルが適切に特定された場合の精度を保ちながら,不特定シナリオにおいて頑健な推論をもたらすことを示す。
論文 参考訳(メタデータ) (2023-05-25T09:06:26Z) - Variable Importance Matching for Causal Inference [73.25504313552516]
これらの目標を達成するためのModel-to-Matchと呼ばれる一般的なフレームワークについて説明する。
Model-to-Matchは、距離メートル法を構築するために変数重要度測定を使用する。
LASSO を用いて Model-to-Match フレームワークを運用する。
論文 参考訳(メタデータ) (2023-02-23T00:43:03Z) - One-Shot Domain Adaptive and Generalizable Semantic Segmentation with
Class-Aware Cross-Domain Transformers [96.51828911883456]
セマンティックセグメンテーションのための教師なしのsim-to-realドメイン適応(UDA)は、シミュレーションデータに基づいて訓練されたモデルの実世界のテスト性能を改善することを目的としている。
従来のUDAは、適応のためのトレーニング中に利用可能なラベルのない実世界のサンプルが豊富にあると仮定することが多い。
実世界のデータサンプルが1つしか利用できない,一発の教師なしシム・トゥ・リアル・ドメイン適応(OSUDA)と一般化問題について検討する。
論文 参考訳(メタデータ) (2022-12-14T15:54:15Z) - Rigorous Assessment of Model Inference Accuracy using Language
Cardinality [5.584832154027001]
我々は,統計的推定を決定論的精度尺度に置き換えることで,モデル精度評価におけるバイアスと不確実性を最小化する体系的アプローチを開発する。
我々は、最先端の推論ツールによって推定されるモデルの精度を評価することによって、我々のアプローチの一貫性と適用性を実験的に実証した。
論文 参考訳(メタデータ) (2022-11-29T21:03:26Z) - CausalBench: A Large-scale Benchmark for Network Inference from
Single-cell Perturbation Data [61.088705993848606]
本稿では,実世界の介入データに対する因果推論手法を評価するベンチマークスイートCausalBenchを紹介する。
CaulBenchには、新しい分散ベースの介入メトリクスを含む、生物学的に動機付けられたパフォーマンスメトリクスが含まれている。
論文 参考訳(メタデータ) (2022-10-31T13:04:07Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
カラムワイズモデルを適応的かつ自動的に構成するための一般化反復計算フレームワークを提案する。
既製の学習者,シミュレータ,インターフェースを備えた具体的な実装を提供する。
論文 参考訳(メタデータ) (2022-06-15T19:10:35Z) - Variational Gibbs Inference for Statistical Model Estimation from
Incomplete Data [7.4250022679087495]
不完全データから統計モデルのパラメータを推定する新しい汎用手法である変分ギブス推論(VGI)を導入する。
不完全データからの変分オートエンコーダや正規化フローなどの重要な機械学習モデルを推定し、VGIを一連の合成および実世界の推定タスクで検証する。
論文 参考訳(メタデータ) (2021-11-25T17:22:22Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
シミュレーションベースの推論は、その可能性が実際に計算できない場合でもモデルのパラメータを学習することができる。
あるクラスのメソッドは、異なるパラメータでシミュレートされたデータを使用して、確率とエビデンス比の償却推定器を推定する。
モデルパラメータとシミュレーションデータ間の相互情報の観点から,本手法が定式化可能であることを示す。
論文 参考訳(メタデータ) (2021-06-03T12:59:16Z) - Distributed Learning of Finite Gaussian Mixtures [21.652015112462]
有限ガウス混合系の分散学習における分割・対数アプローチについて検討する。
新しい推定器は整合性を示し、いくつかの一般的な条件下ではルート-nの整合性を保持する。
シミュレーションおよび実世界のデータに基づく実験により、提案手法はグローバル推定器と同等の統計的性能を有することが示された。
論文 参考訳(メタデータ) (2020-10-20T16:17:47Z) - Model-based Policy Optimization with Unsupervised Model Adaptation [37.09948645461043]
本研究では,不正確なモデル推定による実データとシミュレーションデータのギャップを埋めて,より良いポリシ最適化を実現する方法について検討する。
本稿では,教師なしモデル適応を導入したモデルベース強化学習フレームワークAMPOを提案する。
提案手法は,一連の連続制御ベンチマークタスクにおけるサンプル効率の観点から,最先端の性能を実現する。
論文 参考訳(メタデータ) (2020-10-19T14:19:42Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
補間分類器間のテストエラーの完全な分布を正確に計算する手法を開発した。
テストエラーは、最悪の補間モデルのテストエラーから大きく逸脱する、小さな典型的な$varepsilon*$に集中する傾向にある。
以上の結果から,統計的学習理論における通常の解析手法は,実際に観測された優れた一般化性能を捉えるのに十分な粒度にはならない可能性が示唆された。
論文 参考訳(メタデータ) (2020-06-22T21:12:31Z) - Amortized Bayesian model comparison with evidential deep learning [0.12314765641075436]
本稿では,専門的なディープラーニングアーキテクチャを用いたベイズモデルの比較手法を提案する。
提案手法は純粋にシミュレーションベースであり,観測された各データセットに対して,すべての代替モデルを明示的に適合させるステップを回避している。
提案手法は,本研究で検討した事例に対して,精度,キャリブレーション,効率の点で優れた結果が得られることを示す。
論文 参考訳(メタデータ) (2020-04-22T15:15:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。