論文の概要: Testing Generalizability in Causal Inference
- arxiv url: http://arxiv.org/abs/2411.03021v1
- Date: Tue, 05 Nov 2024 11:44:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-06 15:00:42.393302
- Title: Testing Generalizability in Causal Inference
- Title(参考訳): 因果推論におけるテストの一般化可能性
- Authors: Daniel de Vassimon Manela, Linying Yang, Robin J. Evans,
- Abstract要約: 機械学習アルゴリズムの一般化性を統計的に評価するための公式な手続きは存在しない。
本稿では,因果推論設定におけるモデル一般化可能性を評価するための体系的かつ定量的なフレームワークを提案する。
実データに基づくシミュレーションにより,本手法はより現実的な評価を確実にする。
- 参考スコア(独自算出の注目度): 3.547529079746247
- License:
- Abstract: Ensuring robust model performance across diverse real-world scenarios requires addressing both transportability across domains with covariate shifts and extrapolation beyond observed data ranges. However, there is no formal procedure for statistically evaluating generalizability in machine learning algorithms, particularly in causal inference. Existing methods often rely on arbitrary metrics like AUC or MSE and focus predominantly on toy datasets, providing limited insights into real-world applicability. To address this gap, we propose a systematic and quantitative framework for evaluating model generalizability under covariate distribution shifts, specifically within causal inference settings. Our approach leverages the frugal parameterization, allowing for flexible simulations from fully and semi-synthetic benchmarks, offering comprehensive evaluations for both mean and distributional regression methods. By basing simulations on real data, our method ensures more realistic evaluations, which is often missing in current work relying on simplified datasets. Furthermore, using simulations and statistical testing, our framework is robust and avoids over-reliance on conventional metrics. Grounded in real-world data, it provides realistic insights into model performance, bridging the gap between synthetic evaluations and practical applications.
- Abstract(参考訳): さまざまな実世界のシナリオにまたがって堅牢なモデルパフォーマンスを保証するには、共変量シフトと観測データ範囲を越えた外挿によるドメイン間のトランスポート可能性の両方に対処する必要がある。
しかし、機械学習アルゴリズム、特に因果推論において、統計的に一般化可能性を評価する公式な手順は存在しない。
既存の手法は、しばしばAUCやMSEのような任意のメトリクスに依存し、主におもちゃのデータセットに焦点を合わせ、現実世界の応用可能性に関する限られた洞察を提供する。
このギャップに対処するために、共変量分布シフト、特に因果推論設定におけるモデル一般化可能性を評価するための体系的かつ定量的なフレームワークを提案する。
提案手法はフラゲパラメータ化を利用して,完全および半合成ベンチマークからのフレキシブルなシミュレーションを可能にし,平均回帰法と分布回帰法を総合的に評価する。
実データに基づくシミュレーションにより,本手法はより現実的な評価を確実にする。
さらに,シミュレーションと統計的テストにより,従来のメトリクスの過度な信頼を回避できる。
実世界のデータに基づいて、モデルパフォーマンスに関する現実的な洞察を提供し、合成評価と実践的応用のギャップを埋める。
関連論文リスト
- On conditional diffusion models for PDE simulations [53.01911265639582]
スパース観測の予測と同化のためのスコアベース拡散モデルについて検討した。
本稿では,予測性能を大幅に向上させる自動回帰サンプリング手法を提案する。
また,条件付きスコアベースモデルに対する新たなトレーニング戦略を提案する。
論文 参考訳(メタデータ) (2024-10-21T18:31:04Z) - MITA: Bridging the Gap between Model and Data for Test-time Adaptation [68.62509948690698]
テスト時間適応(TTA)は、モデルの一般化性を高めるための有望なパラダイムとして登場した。
本稿では,Met-In-The-MiddleをベースとしたMITAを提案する。
論文 参考訳(メタデータ) (2024-10-12T07:02:33Z) - Addressing Misspecification in Simulation-based Inference through Data-driven Calibration [43.811367860375825]
近年の研究では、モデルの不特定がシミュレーションに基づく推論の信頼性を損なうことが示されている。
本研究は, モデル誤特定を克服し, 地上真実パラメータ測定の小さな実世界の校正セットであるロバスト後部推定(ROPE)を導入する。
論文 参考訳(メタデータ) (2024-05-14T16:04:39Z) - Bayesian Nonparametrics Meets Data-Driven Distributionally Robust Optimization [29.24821214671497]
機械学習と統計モデルのトレーニングは、しばしばデータ駆動型リスク基準の最適化を伴う。
ベイズ的非パラメトリック(ディリクレ過程)理論と、スムーズなあいまいさ-逆選好の最近の決定論的モデルを組み合わせた、新しいロバストな基準を提案する。
実用的な実装として、よく知られたディリクレプロセスの表現に基づいて、評価基準の抽出可能な近似を提案し、研究する。
論文 参考訳(メタデータ) (2024-01-28T21:19:15Z) - One-Shot Domain Adaptive and Generalizable Semantic Segmentation with
Class-Aware Cross-Domain Transformers [96.51828911883456]
セマンティックセグメンテーションのための教師なしのsim-to-realドメイン適応(UDA)は、シミュレーションデータに基づいて訓練されたモデルの実世界のテスト性能を改善することを目的としている。
従来のUDAは、適応のためのトレーニング中に利用可能なラベルのない実世界のサンプルが豊富にあると仮定することが多い。
実世界のデータサンプルが1つしか利用できない,一発の教師なしシム・トゥ・リアル・ドメイン適応(OSUDA)と一般化問題について検討する。
論文 参考訳(メタデータ) (2022-12-14T15:54:15Z) - CausalBench: A Large-scale Benchmark for Network Inference from
Single-cell Perturbation Data [61.088705993848606]
本稿では,実世界の介入データに対する因果推論手法を評価するベンチマークスイートCausalBenchを紹介する。
CaulBenchには、新しい分散ベースの介入メトリクスを含む、生物学的に動機付けられたパフォーマンスメトリクスが含まれている。
論文 参考訳(メタデータ) (2022-10-31T13:04:07Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
カラムワイズモデルを適応的かつ自動的に構成するための一般化反復計算フレームワークを提案する。
既製の学習者,シミュレータ,インターフェースを備えた具体的な実装を提供する。
論文 参考訳(メタデータ) (2022-06-15T19:10:35Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
シミュレーションベースの推論は、その可能性が実際に計算できない場合でもモデルのパラメータを学習することができる。
あるクラスのメソッドは、異なるパラメータでシミュレートされたデータを使用して、確率とエビデンス比の償却推定器を推定する。
モデルパラメータとシミュレーションデータ間の相互情報の観点から,本手法が定式化可能であることを示す。
論文 参考訳(メタデータ) (2021-06-03T12:59:16Z) - Distributed Learning of Finite Gaussian Mixtures [21.652015112462]
有限ガウス混合系の分散学習における分割・対数アプローチについて検討する。
新しい推定器は整合性を示し、いくつかの一般的な条件下ではルート-nの整合性を保持する。
シミュレーションおよび実世界のデータに基づく実験により、提案手法はグローバル推定器と同等の統計的性能を有することが示された。
論文 参考訳(メタデータ) (2020-10-20T16:17:47Z) - Model-based Policy Optimization with Unsupervised Model Adaptation [37.09948645461043]
本研究では,不正確なモデル推定による実データとシミュレーションデータのギャップを埋めて,より良いポリシ最適化を実現する方法について検討する。
本稿では,教師なしモデル適応を導入したモデルベース強化学習フレームワークAMPOを提案する。
提案手法は,一連の連続制御ベンチマークタスクにおけるサンプル効率の観点から,最先端の性能を実現する。
論文 参考訳(メタデータ) (2020-10-19T14:19:42Z) - Amortized Bayesian model comparison with evidential deep learning [0.12314765641075436]
本稿では,専門的なディープラーニングアーキテクチャを用いたベイズモデルの比較手法を提案する。
提案手法は純粋にシミュレーションベースであり,観測された各データセットに対して,すべての代替モデルを明示的に適合させるステップを回避している。
提案手法は,本研究で検討した事例に対して,精度,キャリブレーション,効率の点で優れた結果が得られることを示す。
論文 参考訳(メタデータ) (2020-04-22T15:15:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。