論文の概要: FSLI: An Interpretable Formal Semantic System for One-Dimensional Ordering Inference
- arxiv url: http://arxiv.org/abs/2502.08415v2
- Date: Fri, 19 Sep 2025 17:45:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-22 14:11:06.894201
- Title: FSLI: An Interpretable Formal Semantic System for One-Dimensional Ordering Inference
- Title(参考訳): FSLI: 一次元順序推論のための解釈可能な形式意味体系
- Authors: Maha Alkhairy, Vincent Homer, Brendan O'Connor,
- Abstract要約: 論理的推論の一次元順序付け問題を解くシステムを開発した。
自然言語の前提と候補文を一階述語論理に変換する。
BIGbenchの論理推論タスクでは100%の精度を実現し、AR-LSATの構文的に単純化されたサブセットでは88%の精度を実現している。
- 参考スコア(独自算出の注目度): 0.9048611509540079
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We develop a system for solving logical deduction one-dimensional ordering problems by transforming natural language premises and candidate statements into first-order logic. Building on Heim and Kratzer's syntax-based compositional semantic rules which utilizes lambda calculus, we develop a semantic parsing algorithm with abstract types, templated rules, and a dynamic component for interpreting entities within a context constructed from the input. The resulting logical forms are executed via constraint logic programming to determine which candidate statements can be logically deduced from the premises. The symbolic system, the Formal Semantic Logic Inferer (FSLI), provides a formally grounded, linguistically driven system for natural language logical deduction. We evaluate it on both synthetic and derived logical deduction problems. FSLI achieves 100% accuracy on BIG-bench's logical deduction task and 88% on a syntactically simplified subset of AR-LSAT outperforming an LLM baseline, o1-preview. While current research in natural language reasoning emphasizes neural language models, FSLI highlights the potential of principled, interpretable systems for symbolic logical deduction in NLP.
- Abstract(参考訳): 本研究では,自然言語の前提条件と候補文を一階述語論理に変換することによって,論理的推論の一次元順序付け問題を解くシステムを開発した。
ラムダ計算を利用したHeimとKratzerの構文ベースの合成意味ルールに基づいて,抽象型,テンプレートルール,および入力から構築されたコンテキスト内でエンティティを解釈する動的コンポーネントを用いた意味解析アルゴリズムを開発した。
結果として得られる論理形式は制約論理プログラミングによって実行され、どの候補文が前提から論理的に導出できるかを決定する。
記号体系、FSLI (Formal Semantic Logic Inferer) は、自然言語論理推論のための公式な基盤付き言語駆動システムを提供する。
合成と導出の両方の論理的推論問題で評価する。
FSLIは、BIG-benchの論理推論タスクにおいて100%の精度を達成し、AR-LSATの構文的に単純化されたサブセットでは88%がLLMベースラインであるo1-previewより優れている。
自然言語推論における現在の研究は、ニューラルネットワークモデルを強調しているが、FSLIは、NLPにおける記号論理推論のための原則付き解釈可能なシステムの可能性を強調している。
関連論文リスト
- From Language to Logic: A Bi-Level Framework for Structured Reasoning [6.075080928704587]
自然言語入力に対する構造化推論は、人工知能における中核的な課題である。
本稿では,ハイレベルなタスク抽象化と低レベルなロジック生成という2段階のプロセスを通じて,言語を論理にマッピングする新しいフレームワークを提案する。
提案手法は既存のベースラインの精度を著しく上回り,精度は最大40%向上した。
論文 参考訳(メタデータ) (2025-07-11T11:24:09Z) - Logic-Based Artificial Intelligence Algorithms Supporting Categorical Semantics [0.0]
我々は,ホルン論理の規則を用いて,カルテシアン圏の対象を推論するための前方連鎖法と正規形式アルゴリズムを開発した。
また、一階述語論理の多階述語理論、文脈、断片化をサポートするために一階述語統一を適応する。
論文 参考訳(メタデータ) (2025-04-27T18:02:02Z) - EquiBench: Benchmarking Large Language Models' Understanding of Program Semantics via Equivalence Checking [55.81461218284736]
EquiBenchは、大規模言語モデル(LLM)を評価するための新しいベンチマークである。
2つのプログラムが全ての可能な入力に対して同一の出力を生成するかどうかを決定する。
19の最先端LCMを評価し、最高の精度は63.8%と76.2%であり、これは50%のランダムベースラインよりわずかに高い。
論文 参考訳(メタデータ) (2025-02-18T02:54:25Z) - Divide and Translate: Compositional First-Order Logic Translation and Verification for Complex Logical Reasoning [28.111458981621105]
複雑な論理的推論タスクは、長い推論を必要とするが、それは、チェーン・オブ・シークレットのプロンプトを持つ大きな言語モデル(LLM)が依然として不足している。
本稿では,翻訳中に自然言語に隠された論理的意味を抽出する合成一階論理翻訳を提案する。
提案手法は,CLOVERと呼ばれる7つの論理的推論ベンチマークを用いて評価し,従来のニューロシンボリックアプローチよりも優れていたことを示す。
論文 参考訳(メタデータ) (2024-10-10T15:42:39Z) - LogicPro: Improving Complex Logical Reasoning via Program-Guided Learning [23.987059076950622]
本稿では,プログラム例を通して大規模言語モデル (LLM) の論理的推論を強化するための新しいアプローチであるLogicProを提案する。
私たちは、広く利用可能なアルゴリズム問題とそのコードソリューションを単純に活用することで、これを効果的に実現します。
提案手法はBBH$27$, GSM8K, HellSwag, Logicqa, Reclor, RTEデータセットの複数のモデルの大幅な改善を実現する。
論文 参考訳(メタデータ) (2024-09-19T17:30:45Z) - H-STAR: LLM-driven Hybrid SQL-Text Adaptive Reasoning on Tables [56.73919743039263]
本稿では,2段階のプロセスにシンボル的アプローチと意味的アプローチ(テキスト的アプローチ)を統合し,制約に対処する新しいアルゴリズムを提案する。
実験の結果,H-STARは3つの質問応答(QA)と事実検証データセットにおいて,最先端の手法を大幅に上回っていることがわかった。
論文 参考訳(メタデータ) (2024-06-29T21:24:19Z) - Improving Complex Reasoning over Knowledge Graph with Logic-Aware Curriculum Tuning [89.89857766491475]
カリキュラムベースの論理認識型チューニングフレームワークであるLACTを提案する。
具体的には、任意の一階論理クエリをバイナリツリー分解によって拡張する。
広く使われているデータセットに対する実験では、LATは高度な手法よりも大幅に改善(平均+5.5% MRRスコア)し、新しい最先端技術を実現している。
論文 参考訳(メタデータ) (2024-05-02T18:12:08Z) - Language Models can be Logical Solvers [99.40649402395725]
論理解法の推論過程を直接エミュレートする新しい言語モデルであるLoGiPTを導入する。
LoGiPTは、導出的ソルバの見えない推論過程を明らかにして精錬することから導かれる、新しく構築された命令チューニングデータセットに基づいて微調整される。
論文 参考訳(メタデータ) (2023-11-10T16:23:50Z) - Query Structure Modeling for Inductive Logical Reasoning Over Knowledge
Graphs [67.043747188954]
KGに対する帰納的論理的推論のための構造モデル付きテキスト符号化フレームワークを提案する。
線形化されたクエリ構造とエンティティを、事前訓練された言語モデルを使ってエンコードして、回答を見つける。
2つの帰納的論理推論データセットと3つの帰納的推論データセットについて実験を行った。
論文 参考訳(メタデータ) (2023-05-23T01:25:29Z) - Towards Invertible Semantic-Preserving Embeddings of Logical Formulae [1.0152838128195467]
論理的要件とルールの学習と最適化は、人工知能において常に重要な問題である。
現在のメソッドは、カーネルメソッドを介して効果的なセマンティック保存の埋め込みを構築することができるが、それらが定義するマップは可逆ではない。
本稿では,グラフ変分オートエンコーダフレームワークに基づく深層アーキテクチャを応用した埋め込みの逆変換法について述べる。
論文 参考訳(メタデータ) (2023-05-03T10:49:01Z) - MURMUR: Modular Multi-Step Reasoning for Semi-Structured Data-to-Text
Generation [102.20036684996248]
多段階推論を用いた半構造化データからテキストを生成するための,ニューロシンボリックなモジュラーアプローチであるMURMURを提案する。
WebNLG や LogicNLG のような2つのデータ・テキスト生成タスクについて実験を行った。
論文 参考訳(メタデータ) (2022-12-16T17:36:23Z) - Refining Labelled Systems for Modal and Constructive Logics with
Applications [0.0]
この論文は、モーダル論理や構成論理のセマンティクスを「経済的な」証明システムに変換する手段として機能する。
精製法は、ラベル付きおよびネストされたシーケント計算の2つの証明理論パラダイムを結合する。
導入された洗練されたラベル付き電卓は、デオン性STIT論理に対する最初の証明探索アルゴリズムを提供するために使用される。
論文 参考訳(メタデータ) (2021-07-30T08:27:15Z) - Logic-Driven Context Extension and Data Augmentation for Logical
Reasoning of Text [65.24325614642223]
論理的な記号や表現をテキストで理解し、答えにたどり着くよう提案します。
このような論理的情報に基づいて,文脈拡張フレームワークとデータ拡張アルゴリズムを提案する。
本手法は最先端の性能を実現し,論理駆動コンテキスト拡張フレームワークとデータ拡張アルゴリズムの両方が精度向上に寄与する。
論文 参考訳(メタデータ) (2021-05-08T10:09:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。