論文の概要: From Language to Logic: A Bi-Level Framework for Structured Reasoning
- arxiv url: http://arxiv.org/abs/2507.08501v1
- Date: Fri, 11 Jul 2025 11:24:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-14 18:03:54.341298
- Title: From Language to Logic: A Bi-Level Framework for Structured Reasoning
- Title(参考訳): 言語から論理へ:構造化推論のための双方向フレームワーク
- Authors: Keying Yang, Hao Wang, Kai Yang,
- Abstract要約: 自然言語入力に対する構造化推論は、人工知能における中核的な課題である。
本稿では,ハイレベルなタスク抽象化と低レベルなロジック生成という2段階のプロセスを通じて,言語を論理にマッピングする新しいフレームワークを提案する。
提案手法は既存のベースラインの精度を著しく上回り,精度は最大40%向上した。
- 参考スコア(独自算出の注目度): 6.075080928704587
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Structured reasoning over natural language inputs remains a core challenge in artificial intelligence, as it requires bridging the gap between unstructured linguistic expressions and formal logical representations. In this paper, we propose a novel \textbf{bi-level framework} that maps language to logic through a two-stage process: high-level task abstraction and low-level logic generation. At the upper level, a large language model (LLM) parses natural language queries into intermediate structured representations specifying the problem type, objectives, decision variables, and symbolic constraints. At the lower level, the LLM uses these representations to generate symbolic workflows or executable reasoning programs for accurate and interpretable decision making. The framework supports modular reasoning, enforces explicit constraints, and generalizes across domains such as mathematical problem solving, question answering, and logical inference. We further optimize the framework with an end-to-end {bi-level} optimization approach that jointly refines both the high-level abstraction and low-level logic generation stages. Experiments on multiple realistic reasoning benchmarks demonstrate that our approach significantly outperforms existing baselines in accuracy, with accuracy gains reaching as high as 40\%. Moreover, the bi-level design enhances transparency and error traceability, offering a promising step toward trustworthy and systematic reasoning with LLMs.
- Abstract(参考訳): 自然言語入力に対する構造化推論は、非構造化言語表現と形式論理表現の間のギャップを埋めることを必要とするため、人工知能において依然として中心的な課題である。
本稿では,ハイレベルなタスク抽象化と低レベルな論理生成という2段階のプロセスを通じて,言語を論理にマッピングする新しいフレームワークを提案する。
上位層では、大きな言語モデル(LLM)が自然言語クエリを、問題タイプ、目的、決定変数、シンボル的制約を指定する中間構造表現に解析する。
低いレベルでは、LLMはこれらの表現を使用して、正確かつ解釈可能な意思決定のためのシンボリックワークフローや実行可能な推論プログラムを生成する。
このフレームワークはモジュラー推論をサポートし、明示的な制約を強制し、数学的問題解決、質問応答、論理推論などの領域を一般化する。
さらに、高レベルの抽象化と低レベルのロジック生成の両方を共同で洗練するエンドツーエンドの {bi-level} 最適化アプローチにより、フレームワークをさらに最適化する。
複数の現実的推論ベンチマークの実験により、我々の手法は既存のベースラインを精度で大幅に上回り、精度は最大40%向上した。
さらに、両レベルの設計は透明性とエラートレーサビリティを向上し、LLMによる信頼性と体系的な推論に向けた有望なステップを提供する。
関連論文リスト
- Do LLMs Dream of Discrete Algorithms? [0.7646713951724011]
大規模言語モデル(LLM)は、人工知能の風景を急速に変化させてきた。
確率的推論への依存は、厳密な論理的推論を必要とする領域における有効性を制限する。
本稿では,論理ベースの推論モジュールでLLMを増強するニューロシンボリックアプローチを提案する。
論文 参考訳(メタデータ) (2025-06-29T22:03:01Z) - Dissecting Logical Reasoning in LLMs: A Fine-Grained Evaluation and Supervision Study [34.29839553042609]
本研究では,3次元にわたる論理的推論を評価するためのきめ細かい評価フレームワークであるFinalLogicを提案する。
微調整時の監督形式の効果について検討する。
この結果から, 自然言語指導は, アウト・オブ・ディストリビューションや長文タスクにも強い一般化をもたらすことが明らかとなった。
論文 参考訳(メタデータ) (2025-06-05T09:34:12Z) - Learning to Reason via Mixture-of-Thought for Logical Reasoning [56.24256916896427]
Mixture-of-Thought (MoT) は、LLMが自然言語、コード、真理表の3つの相補的なモダリティにまたがる推論を可能にするフレームワークである。
MoT は,(1) 自己進化型 MoT トレーニング,(2) 3 つのモーダルの相乗効果を完全に活用してより良い予測を生成する MoT 推論,という2段階の設計を採用する。
論文 参考訳(メタデータ) (2025-05-21T17:59:54Z) - Reasoning-as-Logic-Units: Scaling Test-Time Reasoning in Large Language Models Through Logic Unit Alignment [21.12989936864145]
CoT(Chain-of-Thought)のプロンプトによって,大規模言語モデル(LLM)の推論能力の向上が期待できる。
本稿では、生成したプログラムと対応するNL記述との間に論理単位を整列させることにより、より信頼性の高い推論経路を構築するReasoning-as-Logic-Units (RaLU)を提案する。
論文 参考訳(メタデータ) (2025-02-05T08:23:18Z) - Proof of Thought : Neurosymbolic Program Synthesis allows Robust and Interpretable Reasoning [1.3003982724617653]
大規模言語モデル(LLM)は自然言語処理に革命をもたらしたが、一貫性のない推論に苦戦している。
本研究では,LLM出力の信頼性と透明性を高めるフレームワークであるProof of Thoughtを紹介する。
主な貢献は、論理的整合性を高めるためのソート管理を備えた堅牢な型システム、事実的知識と推論的知識を明確に区別するための規則の明示である。
論文 参考訳(メタデータ) (2024-09-25T18:35:45Z) - Language Models can be Logical Solvers [99.40649402395725]
論理解法の推論過程を直接エミュレートする新しい言語モデルであるLoGiPTを導入する。
LoGiPTは、導出的ソルバの見えない推論過程を明らかにして精錬することから導かれる、新しく構築された命令チューニングデータセットに基づいて微調整される。
論文 参考訳(メタデータ) (2023-11-10T16:23:50Z) - Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing Logical Reasoning Capabilities of Language Models [56.34029644009297]
大規模言語モデル(LLM)は、形式的知識表現(KR)システムの様々な制限を克服する能力を示した。
LLMは誘導的推論において最も優れているが、誘導的推論では最も効果が低い。
モデルの性能を評価するため,シングルタスクトレーニング,マルチタスクトレーニング,および「チェーンオブ思考」知識蒸留細調整技術について検討した。
論文 参考訳(メタデータ) (2023-10-02T01:00:50Z) - Modeling Hierarchical Reasoning Chains by Linking Discourse Units and
Key Phrases for Reading Comprehension [80.99865844249106]
本稿では,論理的推論の基盤として,対話レベルと単語レベルの両方の文脈を扱う総合グラフネットワーク(HGN)を提案する。
具体的には、ノードレベルの関係とタイプレベルの関係は、推論過程におけるブリッジと解釈できるが、階層的な相互作用機構によってモデル化される。
論文 参考訳(メタデータ) (2023-06-21T07:34:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。