論文の概要: Semantic Learning for Molecular Communication in Internet of Bio-Nano Things
- arxiv url: http://arxiv.org/abs/2502.08426v1
- Date: Wed, 12 Feb 2025 14:09:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-13 13:44:29.094134
- Title: Semantic Learning for Molecular Communication in Internet of Bio-Nano Things
- Title(参考訳): 生物ナノ物質のインターネットにおける分子間通信のための意味学習
- Authors: Hanlin Cai, Ozgur B. Akan,
- Abstract要約: 本稿では,タスク指向分子通信を最適化するエンドツーエンドのセマンティックラーニングフレームワークを提案する。
提案フレームワークはディープエンコーダ・デコーダアーキテクチャを用いて,セマンティックな特徴を効率的に抽出,定量化し,デコードする。
実験により,提案するセマンティック・フレームワークは従来のJPEG圧縮と比較して診断精度を少なくとも25%向上することが示された。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Molecular communication (MC) provides a foundational framework for information transmission in the Internet of Bio-Nano Things (IoBNT), where efficiency and reliability are crucial. However, the inherent limitations of molecular channels, such as low transmission rates, noise, and inter-symbol interference (ISI), limit their ability to support complex data transmission. This paper proposes an end-to-end semantic learning framework designed to optimize task-oriented molecular communication, with a focus on biomedical diagnostic tasks under resource-constrained conditions. The proposed framework employs a deep encoder-decoder architecture to efficiently extract, quantize, and decode semantic features, prioritizing task-relevant semantic information to enhance diagnostic classification performance. Additionally, a probabilistic channel network is introduced to approximate molecular propagation dynamics, enabling gradient-based optimization for end-to-end learning. Experimental results demonstrate that the proposed semantic framework improves diagnostic accuracy by at least 25% compared to conventional JPEG compression with LDPC coding methods under resource-constrained communication scenarios.
- Abstract(参考訳): 分子通信(MC)は、効率と信頼性が不可欠であるバイオナノモノインターネット(IoBNT)において、情報伝達の基礎となる枠組みを提供する。
しかし、低透過率、ノイズ、シンボル間干渉(ISI)のような分子チャネルの固有の制限は、複雑なデータ伝送をサポートする能力を制限する。
本稿では,資源制約条件下での生体医学的診断タスクに着目し,タスク指向の分子間通信を最適化するエンド・ツー・エンドのセマンティック・ラーニングフレームワークを提案する。
提案フレームワークはディープエンコーダ・デコーダアーキテクチャを用いてセマンティック特徴の抽出,定量化,デコードを行い,タスク関連セマンティック情報を優先して診断分類性能を向上させる。
さらに、分子の伝播ダイナミクスを近似するために確率論的チャネルネットワークを導入し、エンドツーエンド学習のための勾配に基づく最適化を可能にする。
実験結果から,提案するセマンティックフレームワークは,資源制約のある通信シナリオ下でのLDPC符号化方式による従来のJPEG圧縮と比較して,診断精度を少なくとも25%向上することが示された。
関連論文リスト
- Unlocking Potential Binders: Multimodal Pretraining DEL-Fusion for Denoising DNA-Encoded Libraries [51.72836644350993]
マルチモーダルプレトレーニング DEL-Fusion Model (MPDF)
我々は,異なる複合表現とそれらのテキスト記述の対比対象を適用した事前学習タスクを開発する。
本稿では, 原子, 分子, 分子レベルでの複合情報をアマルガメートする新しいDEL融合フレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-07T17:32:21Z) - Tackling Distribution Shifts in Task-Oriented Communication with Information Bottleneck [28.661084093544684]
本稿では,情報ボトルネック(IB)原理と不変リスク最小化(IRM)フレームワークに基づく新しいアプローチを提案する。
提案手法は,効率的な領域シフト一般化のための高機能を有するコンパクトかつ情報的特徴を抽出することを目的としている。
提案手法は最先端の手法より優れ、より優れたレート歪みトレードオフを実現することを示す。
論文 参考訳(メタデータ) (2024-05-15T17:07:55Z) - Learning to Denoise Biomedical Knowledge Graph for Robust Molecular Interaction Prediction [50.7901190642594]
分子間相互作用予測のためのバイオKDN (Biomedical Knowledge Graph Denoising Network) を提案する。
BioKDNは、ノイズの多いリンクを学習可能な方法で識別することで、局所的な部分グラフの信頼性の高い構造を洗練する。
ターゲットの相互作用に関する関係を円滑にすることで、一貫性とロバストなセマンティクスを維持する。
論文 参考訳(メタデータ) (2023-12-09T07:08:00Z) - Adaptive Resource Allocation for Semantic Communication Networks [34.189531352110386]
本稿では,意味的量子化効率(SQE)や伝送遅延などのセマンティック通信ネットワークにおけるサービス品質について検討する。
全体として有効なSC-QoSを最大化する問題は、基地局、ビット意味表現、サブチャネル割り当て、およびセマンティックリソース割り当てを共同で送信することで定式化される。
本設計では, セマンティックノイズに効果的に対処でき, 無線通信において, 複数のベンチマーク方式と比較して優れた性能が得られる。
論文 参考訳(メタデータ) (2023-12-02T09:12:12Z) - Reasoning with the Theory of Mind for Pragmatic Semantic Communication [62.87895431431273]
本稿では,実用的な意味コミュニケーションフレームワークを提案する。
2つの知性エージェント間の効果的な目標指向情報共有を可能にする。
数値的な評価は、少ないビット量で効率的な通信を実現するためのフレームワークの能力を示している。
論文 参考訳(メタデータ) (2023-11-30T03:36:19Z) - Rethinking Boundary Detection in Deep Learning Models for Medical Image
Segmentation [27.322629156662547]
Convolution, Transformer, Operator (CTO) と呼ばれる新しいネットワークアーキテクチャを提案する。
CTOは、高い認識精度を達成するために、畳み込みニューラルネットワーク(CNN)、ビジョントランスフォーマー(ViT)、および明示的な境界検出演算子を組み合わせている。
提案手法の性能を6つの挑戦的医用画像セグメンテーションデータセットで評価した。
論文 参考訳(メタデータ) (2023-05-01T06:13:08Z) - Causal Semantic Communication for Digital Twins: A Generalizable
Imitation Learning Approach [74.25870052841226]
デジタルツイン(DT)は、物理世界の仮想表現と通信(例えば6G)、コンピュータ、人工知能(AI)技術を活用して、多くの接続されたインテリジェンスサービスを実現する。
無線システムは、厳密な通信制約下での情報意思決定を容易にするために意味コミュニケーション(SC)のパラダイムを利用することができる。
DTベースの無線システムでは,因果意味通信(CSC)と呼ばれる新しいフレームワークが提案されている。
論文 参考訳(メタデータ) (2023-04-25T00:15:00Z) - HiPrompt: Few-Shot Biomedical Knowledge Fusion via Hierarchy-Oriented
Prompting [33.1455954220194]
HiPromptは、監督効率の良い知識融合フレームワークである。
階層指向のプロンプトを通じて、大規模言語モデルの数発の推論能力を引き出す。
収集したKG-Hi-BKFベンチマークデータセットの実験的結果は、HiPromptの有効性を示している。
論文 参考訳(メタデータ) (2023-04-12T16:54:26Z) - Semantic Communication Enabling Robust Edge Intelligence for
Time-Critical IoT Applications [87.05763097471487]
本稿では、時間クリティカルなIoTアプリケーションのためのセマンティック通信を用いて、堅牢なエッジインテリジェンスを設計することを目的とする。
本稿では,画像DCT係数が推定精度に与える影響を解析し,オフロードのためのチャネル非依存の有効性符号化を提案する。
論文 参考訳(メタデータ) (2022-11-24T20:13:17Z) - Neuro-Symbolic Artificial Intelligence (AI) for Intent based Semantic
Communication [85.06664206117088]
6Gネットワークはデータ転送のセマンティクスと有効性(エンドユーザ)を考慮する必要がある。
観測データの背後にある因果構造を学習するための柱としてNeSy AIが提案されている。
GFlowNetは、無線システムにおいて初めて活用され、データを生成する確率構造を学ぶ。
論文 参考訳(メタデータ) (2022-05-22T07:11:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。