論文の概要: HiPrompt: Few-Shot Biomedical Knowledge Fusion via Hierarchy-Oriented
Prompting
- arxiv url: http://arxiv.org/abs/2304.05973v1
- Date: Wed, 12 Apr 2023 16:54:26 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-13 14:15:35.407480
- Title: HiPrompt: Few-Shot Biomedical Knowledge Fusion via Hierarchy-Oriented
Prompting
- Title(参考訳): HiPrompt:階層指向プロンプトによるバイオメディカル知識融合
- Authors: Jiaying Lu, Jiaming Shen, Bo Xiong, Wenjing Ma, Steffen Staab, Carl
Yang
- Abstract要約: HiPromptは、監督効率の良い知識融合フレームワークである。
階層指向のプロンプトを通じて、大規模言語モデルの数発の推論能力を引き出す。
収集したKG-Hi-BKFベンチマークデータセットの実験的結果は、HiPromptの有効性を示している。
- 参考スコア(独自算出の注目度): 33.1455954220194
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Medical decision-making processes can be enhanced by comprehensive biomedical
knowledge bases, which require fusing knowledge graphs constructed from
different sources via a uniform index system. The index system often organizes
biomedical terms in a hierarchy to provide the aligned entities with
fine-grained granularity. To address the challenge of scarce supervision in the
biomedical knowledge fusion (BKF) task, researchers have proposed various
unsupervised methods. However, these methods heavily rely on ad-hoc lexical and
structural matching algorithms, which fail to capture the rich semantics
conveyed by biomedical entities and terms. Recently, neural embedding models
have proved effective in semantic-rich tasks, but they rely on sufficient
labeled data to be adequately trained. To bridge the gap between the
scarce-labeled BKF and neural embedding models, we propose HiPrompt, a
supervision-efficient knowledge fusion framework that elicits the few-shot
reasoning ability of large language models through hierarchy-oriented prompts.
Empirical results on the collected KG-Hi-BKF benchmark datasets demonstrate the
effectiveness of HiPrompt.
- Abstract(参考訳): 医学的意思決定プロセスは、統一インデックスシステムを介して異なる情報源から構築された知識グラフを融合する必要がある包括的生物医学的知識ベースによって強化される。
インデックスシステムは、細粒度で整列した実体を提供するために、階層的に生物医学用語を整理することが多い。
バイオメディカル・ナレッジ・フュージョン(BKF)の課題に対処するために、研究者は様々な非教師なし手法を提案してきた。
しかし、これらの手法はアドホックな語彙的および構造的マッチングアルゴリズムに大きく依存しており、生物医学的な実体と用語によって伝達される豊かな意味論を捉えることができない。
近年,神経組込みモデルが意味に富むタスクに有効であることが証明されているが,十分なラベル付きデータに依存している。
不足ラベル付きBKFとニューラル埋め込みモデルのギャップを埋めるために,階層指向のプロンプトを通じて大規模言語モデルの少数ショット推論能力を引き出す,監督効率の高い知識融合フレームワークであるHiPromptを提案する。
収集したkg-hi-bkfベンチマークデータセットにおける実験結果はhipromptの有効性を示している。
関連論文リスト
- Unified Representation of Genomic and Biomedical Concepts through Multi-Task, Multi-Source Contrastive Learning [45.6771125432388]
言語モデル(genEREL)を用いたジェノミクス表現について紹介する。
GENERELは遺伝学と生物医学の知識基盤を橋渡しするために設計されたフレームワークである。
本実験は,SNPと臨床概念のニュアンス関係を効果的に把握するgenERELの能力を実証するものである。
論文 参考訳(メタデータ) (2024-10-14T04:19:52Z) - Knowledge-Guided Prompt Learning for Lifespan Brain MR Image Segmentation [53.70131202548981]
本稿では,脳MRIにKGPL(Knowledge-Guided Prompt Learning)を用いた2段階のセグメンテーションフレームワークを提案する。
具体的には,大規模データセットと準最適ラベルを用いたトレーニング前セグメンテーションモデルについて述べる。
知識的プロンプトの導入は、解剖学的多様性と生物学的プロセスの間の意味的関係を捉えている。
論文 参考訳(メタデータ) (2024-07-31T04:32:43Z) - UniCell: Universal Cell Nucleus Classification via Prompt Learning [76.11864242047074]
ユニバーサル細胞核分類フレームワーク(UniCell)を提案する。
異なるデータセットドメインから対応する病理画像のカテゴリを均一に予測するために、新しいプロンプト学習機構を採用している。
特に,本フレームワークでは,原子核検出と分類のためのエンドツーエンドアーキテクチャを採用し,フレキシブルな予測ヘッドを用いて様々なデータセットを適応する。
論文 参考訳(メタデータ) (2024-02-20T11:50:27Z) - Multi-level biomedical NER through multi-granularity embeddings and
enhanced labeling [3.8599767910528917]
本稿では,複数のモデルの強みを統合するハイブリッドアプローチを提案する。
BERTは、文脈化された単語の埋め込み、文字レベルの情報キャプチャのための事前訓練されたマルチチャネルCNN、およびテキスト内の単語間の依存関係のシーケンスラベリングとモデル化のためのBiLSTM + CRFを提供する。
我々は、ベンチマークi2b2/2010データセットを用いて、F1スコア90.11を達成する。
論文 参考訳(メタデータ) (2023-12-24T21:45:36Z) - Diversifying Knowledge Enhancement of Biomedical Language Models using
Adapter Modules and Knowledge Graphs [54.223394825528665]
我々は、軽量なアダプターモジュールを用いて、構造化された生体医学的知識を事前訓練された言語モデルに注入するアプローチを開発した。
バイオメディカル知識システムUMLSと新しいバイオケミカルOntoChemの2つの大きなKGと、PubMedBERTとBioLinkBERTの2つの著名なバイオメディカルPLMを使用している。
計算能力の要件を低く保ちながら,本手法がいくつかの事例において性能改善につながることを示す。
論文 参考訳(メタデータ) (2023-12-21T14:26:57Z) - BERT Based Clinical Knowledge Extraction for Biomedical Knowledge Graph
Construction and Analysis [0.4893345190925178]
本稿では,バイオメディカル臨床ノートからの知識抽出と分析のためのエンドツーエンドアプローチを提案する。
提案フレームワークは, 関連構造化情報を高精度に抽出できる。
論文 参考訳(メタデータ) (2023-04-21T14:45:33Z) - EBOCA: Evidences for BiOmedical Concepts Association Ontology [55.41644538483948]
本論文は,生物医学領域の概念とそれらの関連性を記述するオントロジーであるEBOCAと,それらの関連性を支持するエビデンスを提案する。
DISNETのサブセットから得られるテストデータとテキストからの自動アソシエーション抽出が変換され、実際のシナリオで使用できる知識グラフが作成されるようになった。
論文 参考訳(メタデータ) (2022-08-01T18:47:03Z) - A Meta-embedding-based Ensemble Approach for ICD Coding Prediction [64.42386426730695]
国際疾病分類 (icd) は、世界中で臨床コーディングに使われているデファクトコードである。
これらのコードにより、医療提供者は償還を請求し、診断情報の効率的な保管と検索を容易にします。
提案手法は,日常的な医学データと科学論文の外部知識を用いて,効果的に単語ベクトルを訓練することにより,神経モデルの性能を高める。
論文 参考訳(メタデータ) (2021-02-26T17:49:58Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
診断によって誘導される画像データと遺伝データを統合し、解釈可能なバイオマーカーを提供する新しいディープニューラルネットワークアーキテクチャを提案する。
2つの機能的MRI(fMRI)パラダイムとSingle Nucleotide Polymorphism (SNP)データを含む統合失調症の集団研究で本モデルを評価した。
論文 参考訳(メタデータ) (2021-01-27T19:28:04Z) - Exemplar Auditing for Multi-Label Biomedical Text Classification [0.4873362301533824]
我々は、最近提案されたゼロショットシーケンスラベリング手法「畳み込み分解による教師付きラベリング」を一般化する。
この手法は"イントロスペクション(introspection)"と分類され、推論時間予測のきめ細かい特徴を最も近い隣人に関連付ける。
提案手法は,医療従事者に対して,モデルの予測を駆動する健全な特徴を理解する上で,競争力のある分類モデルと尋問メカニズムの両方を提供する。
論文 参考訳(メタデータ) (2020-04-07T02:54:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。