論文の概要: No Need for Explanations: LLMs can implicitly learn from mistakes in-context
- arxiv url: http://arxiv.org/abs/2502.08550v2
- Date: Wed, 21 May 2025 18:09:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-23 14:49:21.628346
- Title: No Need for Explanations: LLMs can implicitly learn from mistakes in-context
- Title(参考訳): 説明不要:LLMはコンテキスト内のミスから暗黙的に学ぶことができる
- Authors: Lisa Alazraki, Maximilian Mozes, Jon Ander Campos, Tan Yi-Chern, Marek Rei, Max Bartolo,
- Abstract要約: 我々は,大規模な言語モデルが誤りからより効果的に学習する理由を,明確な正当性を持たずに研究する。
我々は、誤答がLLM学習にとってより有益である一方で、モデルに過度に拘束された明確な補正的合理性を示す証拠を見出した。
- 参考スコア(独自算出の注目度): 14.508050809497847
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Showing incorrect answers to Large Language Models (LLMs) is a popular strategy to improve their performance in reasoning-intensive tasks. It is widely assumed that, in order to be helpful, the incorrect answers must be accompanied by comprehensive rationales, explicitly detailing where the mistakes are and how to correct them. However, in this work we present a counterintuitive finding: we observe that LLMs perform better in math reasoning tasks when these rationales are eliminated from the context and models are left to infer on their own what makes an incorrect answer flawed. This approach also substantially outperforms chain-of-thought prompting in our evaluations. These results are consistent across LLMs of different sizes and varying reasoning abilities. To gain an understanding of why LLMs learn from mistakes more effectively without explicit corrective rationales, we perform a thorough analysis, investigating changes in context length and answer diversity between different prompting strategies, and their effect on performance. We also examine evidence of overfitting to the in-context rationales when these are provided, and study the extent to which LLMs are able to autonomously infer high-quality corrective rationales given only incorrect answers as input. We find evidence that, while incorrect answers are more beneficial for LLM learning than additional diverse correct answers, explicit corrective rationales over-constrain the model, thus limiting those benefits.
- Abstract(参考訳): 大規模言語モデル(LLM)に対する誤った回答を示すことは、推論集約的なタスクにおけるパフォーマンスを改善するための一般的な戦略である。
役に立てるためには、誤った答えには包括的な論理的根拠が伴わなければならないと広く考えられている。
しかし、本研究では、LLMが文脈からこれらの有理性を取り除いた場合、数学推論タスクにおいてより優れた性能を発揮することを観察し、不正確な答えを補うためにモデルが自分自身で推論されることを観察する。
このアプローチは、私たちの評価においてチェーン・オブ・シークレット・プロンプトよりも大幅に優れています。
これらの結果は、異なる大きさのLLMと異なる推論能力で一致している。
そこで我々は,LLMが誤りからより効果的に学習する理由を理解するために,文脈長の変化と異なるプロンプト戦略間の解答の多様性,およびそれらの性能への影響について,徹底的な分析を行った。
また,LLMが不適切な回答のみを入力として与える高品質な補正有理を自律的に推測できる範囲について検討した。
誤答は、追加の多様な正解よりもLLM学習にとって有益であるが、明確な正解の有理性はモデルを過剰に抑制し、それらの利点を制限している。
関連論文リスト
- Do Large Language Models Truly Grasp Mathematics? An Empirical Exploration From Cognitive Psychology [13.964263002704582]
提案手法は,Chains of Thoughtプロンプトを用いても,修正されたCRT問題を解く際の誤り率が高いことを示す。
具体的には、従来の質問と比べて平均精度が最大50%低下した。
この発見は、LLMが人間に匹敵する真の数学的推論能力を持っているという信念に挑戦する。
論文 参考訳(メタデータ) (2024-10-19T05:01:56Z) - Not All LLM Reasoners Are Created Equal [58.236453890457476]
小学校数学におけるLLMの解答能力の深さについて検討する。
既存の数式語問題に対して,それらの性能を併用して評価する。
論文 参考訳(メタデータ) (2024-10-02T17:01:10Z) - When Do LLMs Need Retrieval Augmentation? Mitigating LLMs' Overconfidence Helps Retrieval Augmentation [66.01754585188739]
大規模言語モデル(LLM)は、特定の知識を持っていないことを知るのが困難であることが判明した。
Retrieval Augmentation (RA)はLLMの幻覚を緩和するために広く研究されている。
本稿では,LLMの知識境界に対する認識を高めるためのいくつかの手法を提案する。
論文 参考訳(メタデータ) (2024-02-18T04:57:19Z) - Direct Evaluation of Chain-of-Thought in Multi-hop Reasoning with Knowledge Graphs [52.42505579545893]
大規模言語モデル(LLM)は、回答とともにチェーン・オブ・シントの説明を生成するよう促されたとき、強い推論能力を示す。
本稿では,LLMの推論知識と生成したCoTの精度を評価するために,新しい識別的・生成的CoT評価パラダイムを提案する。
論文 参考訳(メタデータ) (2024-02-17T05:22:56Z) - LLMs cannot find reasoning errors, but can correct them given the error location [0.9017736137562115]
低い自己補正性能は、LLMが既知の誤りを訂正する能力ではなく、論理的な誤りを見つけることができないことに起因する。
我々は,そのミスフィリング能力について,最先端のLLMのいくつかをベンチマークし,そのタスクに一般的に苦労していることを示す。
そこで本研究では,地平線ラベルやドメイン内トレーニングデータを使わずに,誤った位置情報を得られることを示す。
論文 参考訳(メタデータ) (2023-11-14T20:12:38Z) - Rephrase and Respond: Let Large Language Models Ask Better Questions for Themselves [57.974103113675795]
本稿では,Rephrase and Respond'(RaR)という手法を提案する。
RaRは、パフォーマンスを改善するためのシンプルだが効果的なプロンプト方法として機能する。
また,RaRは理論的にも経験的にも,一般的なChain-of-Thought(CoT)法と相補的であることを示す。
論文 参考訳(メタデータ) (2023-11-07T18:43:34Z) - Learning From Mistakes Makes LLM Better Reasoner [106.48571828587728]
大規模言語モデル(LLM)は、最近数学の問題を解く際、顕著な推論能力を示した。
この研究は、LLMが人間の学習プロセスに似たMistAkes(LEMA)から学習できるかどうかを探求する。
論文 参考訳(メタデータ) (2023-10-31T17:52:22Z) - Large Language Models Help Humans Verify Truthfulness -- Except When They Are Convincingly Wrong [35.64962031447787]
大規模言語モデル(LLM)は、Web上の情報へのアクセスにますます使われています。
80人のクラウドワーカーによる実験では,事実チェックを容易にするために,言語モデルと検索エンジン(情報検索システム)を比較した。
LLMの説明を読むユーザーは、類似の精度を保ちながら、検索エンジンを使用するものよりもはるかに効率的である。
論文 参考訳(メタデータ) (2023-10-19T08:09:58Z) - SelfCheck: Using LLMs to Zero-Shot Check Their Own Step-by-Step
Reasoning [55.76083560152823]
SelfCheckは、ステップバイステップの推論でエラーを認識する汎用的なゼロショット検証スキーマである。
我々は,3つのデータセット(GSM8K,MathQA,MATH)上でSelfCheckをテストし,エラーの認識に成功し,最終的な回答精度が向上することを確認した。
論文 参考訳(メタデータ) (2023-08-01T10:31:36Z) - Large Language Models are Better Reasoners with Self-Verification [48.534270563880845]
大規模言語モデル(LLM)は、いくつかの自然言語処理タスクにおいて強力な推論能力を示している。
思考の連鎖(CoT)を促進させるLLMは、個別のミスに非常に敏感な、多段階のプロンプトと多段階の予測を必要とする。
また,LLMにも同様な自己検証能力があることを示す。
論文 参考訳(メタデータ) (2022-12-19T15:51:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。