論文の概要: A New Query Expansion Approach via Agent-Mediated Dialogic Inquiry
- arxiv url: http://arxiv.org/abs/2502.08557v3
- Date: Thu, 14 Aug 2025 05:37:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-15 15:52:16.773181
- Title: A New Query Expansion Approach via Agent-Mediated Dialogic Inquiry
- Title(参考訳): エージェント媒介ダイアログによる新しいクエリ拡張手法
- Authors: Wonduk Seo, Hyunjin An, Seunghyun Lee,
- Abstract要約: 本稿では,3つの専門的役割を含む対話的調査を行うエージェント媒介型対話型フレームワークAMDを提案する。
マルチエージェントプロセスを活用することで、AMDは質問やフィードバックの洗練を通じて、よりリッチなクエリ表現を効果的に構築する。
- 参考スコア(独自算出の注目度): 10.76224743599566
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Query expansion is widely used in Information Retrieval (IR) to improve search outcomes by supplementing initial queries with richer information. While recent Large Language Model (LLM) based methods generate pseudo-relevant content and expanded terms via multiple prompts, they often yield homogeneous, narrow expansions that lack the diverse context needed to retrieve relevant information. In this paper, we propose AMD: a new Agent-Mediated Dialogic Framework that engages in a dialogic inquiry involving three specialized roles: (1) a Socratic Questioning Agent reformulates the initial query into three sub-questions, with each question inspired by a specific Socratic questioning dimension, including clarification, assumption probing, and implication probing, (2) a Dialogic Answering Agent generates pseudo-answers, enriching the query representation with multiple perspectives aligned to the user's intent, and (3) a Reflective Feedback Agent evaluates and refines these pseudo-answers, ensuring that only the most relevant and informative content is retained. By leveraging a multi-agent process, AMD effectively crafts richer query representations through inquiry and feedback refinement. Extensive experiments on benchmarks including BEIR and TREC demonstrate that our framework outperforms previous methods, offering a robust solution for retrieval tasks.
- Abstract(参考訳): クエリ拡張は、情報検索(IR)において、よりリッチな情報で初期クエリを補足することで検索結果を改善するために広く利用されている。
近年のLarge Language Model (LLM) に基づく手法は、疑似関連コンテンツを生成し、複数のプロンプトを介して拡張するが、関連する情報を取得するのに必要な多様なコンテキストを欠いた同質で狭い拡張をもたらすことが多い。
本稿では,(1)ソクラティック質問エージェントが3つのサブクェリに初期クエリを再構成し,各質問は,明確化,仮定探索,含意探索を含む特定のソクラティック質問の次元にインスパイアされ,(2)ダイアロティック回答エージェントが疑似回答を生成し,ユーザの意図に沿った複数の視点でクエリ表現を充実させ,(3)リフレクティブフィードバックエージェントがこれらの疑似回答を評価・改善し,最も関連性の高い情報のみを保持することを保証する。
マルチエージェントプロセスを活用することで、AMDは質問やフィードバックの洗練を通じて、よりリッチなクエリ表現を効果的に構築する。
BEIR や TREC などのベンチマークによる大規模な実験により、我々のフレームワークは従来の手法よりも優れており、検索タスクに対して堅牢なソリューションを提供することを示した。
関連論文リスト
- Aligned Query Expansion: Efficient Query Expansion for Information Retrieval through LLM Alignment [4.21943400140261]
Aligned Query Expansion (AQE) は、オープンドメイン質問応答における経路探索のためのクエリ拡張を強化する新しいアプローチである。
AQEはドメイン内およびドメイン外の両方でクエリ拡張のためのベースラインモデルより優れていることを示す。
論文 参考訳(メタデータ) (2025-07-15T07:11:29Z) - Retrieval-Augmented Visual Question Answering via Built-in Autoregressive Search Engines [17.803396998387665]
Retrieval-augmented Generation (RAG)は、知識集約型視覚質問応答(VQA)タスクに対処するために登場した。
本稿では,知識に基づくVQAタスクに対する従来のRAGモデルの代替としてReAuSEを提案する。
我々のモデルは生成型検索器と正確な回答生成器の両方として機能する。
論文 参考訳(メタデータ) (2025-02-23T16:39:39Z) - Improving Scientific Document Retrieval with Concept Coverage-based Query Set Generation [49.29180578078616]
概念カバレッジに基づくクエリセット生成(CCQGen)フレームワークは、ドキュメントの概念を包括的に網羅したクエリセットを生成するように設計されている。
従来のクエリでは十分にカバーされていない概念を識別し,その後のクエリ生成の条件として活用する。
このアプローチは、それぞれの新しいクエリをガイドして、以前のクエリを補完し、ドキュメントの徹底的な理解を支援する。
論文 参考訳(メタデータ) (2025-02-16T15:59:50Z) - Benchmarking Multimodal Retrieval Augmented Generation with Dynamic VQA Dataset and Self-adaptive Planning Agent [102.31558123570437]
マルチモーダル大規模言語モデル(MLLM)に固有の「ハロシン化」問題を緩和する上で,mRAG(Multimodal Retrieval Augmented Generation)が重要な役割を果たしている。
マルチモーダル検索のための自己適応型計画エージェントOmniSearchを提案する。
論文 参考訳(メタデータ) (2024-11-05T09:27:21Z) - Retriever-and-Memory: Towards Adaptive Note-Enhanced Retrieval-Augmented Generation [72.70046559930555]
本稿では,複雑なQAタスクに対する適応ノート拡張RAG(Adaptive Note-Enhanced RAG)と呼ばれる汎用RAGアプローチを提案する。
具体的には、Adaptive-Noteは、知識の成長に関する包括的な視点を導入し、ノート形式で新しい情報を反復的に収集する。
さらに,適切な知識探索を促進するために,適応的な音符ベースの停止探索戦略を用いて,「何を検索し,いつ停止するか」を判断する。
論文 参考訳(メタデータ) (2024-10-11T14:03:29Z) - GenCRF: Generative Clustering and Reformulation Framework for Enhanced Intent-Driven Information Retrieval [20.807374287510623]
我々は,多種多様な意図を適応的に捉えるための生成クラスタリング・改革フレームワークGenCRFを提案する。
我々はGenCRFが,nDCG@10で従来のクエリ修正SOTAを最大12%上回り,最先端のパフォーマンスを実現していることを示す。
論文 参考訳(メタデータ) (2024-09-17T05:59:32Z) - Optimization of Retrieval-Augmented Generation Context with Outlier Detection [0.0]
そこで本研究では,質問応答システムに必要な文脈の小型化と品質向上に焦点をあてる。
私たちのゴールは、最も意味のあるドキュメントを選択し、捨てられたドキュメントをアウトリーチとして扱うことです。
その結果,質問や回答の複雑さを増大させることで,最大の改善が達成された。
論文 参考訳(メタデータ) (2024-07-01T15:53:29Z) - Database-Augmented Query Representation for Information Retrieval [59.57065228857247]
データベース拡張クエリ表現(DAQu)と呼ばれる新しい検索フレームワークを提案する。
DAQuは、元のクエリを複数のテーブルにまたがるさまざまな(クエリ関連の)メタデータで拡張する。
リレーショナルデータベースのメタデータを組み込む様々な検索シナリオにおいてDAQuを検証する。
論文 参考訳(メタデータ) (2024-06-23T05:02:21Z) - Corpus-Steered Query Expansion with Large Language Models [35.64662397095323]
我々はCSQE(Corpus-Steered Query Expansion)を導入し,コーパス内に埋め込まれた知識の取り込みを促進する。
CSQEは、LLMの関連性評価機能を利用して、最初に検索された文書の重要文を体系的に同定する。
大規模な実験により、CSQEは訓練を必要とせず、特にLLMが知識を欠いているクエリで強い性能を示すことが明らかとなった。
論文 参考訳(メタデータ) (2024-02-28T03:58:58Z) - When do Generative Query and Document Expansions Fail? A Comprehensive
Study Across Methods, Retrievers, and Datasets [69.28733312110566]
LMに基づく拡張の最初の包括的解析を行う。
抽出器の性能と拡張による利得との間には強い負の相関関係があることが判明した。
より弱いモデルに拡張を使用するか、ターゲットデータセットがフォーマットのトレーニングコーパスと大きく異なる場合。
論文 参考訳(メタデータ) (2023-09-15T17:05:43Z) - End-to-end Knowledge Retrieval with Multi-modal Queries [50.01264794081951]
ReMuQは、テキストと画像のクエリからコンテンツを統合することで、大規模なコーパスから知識を取得するシステムを必要とする。
本稿では,入力テキストや画像を直接処理し,関連する知識をエンドツーエンドで検索する検索モデルReViz'を提案する。
ゼロショット設定下での2つのデータセットの検索において,優れた性能を示す。
論文 参考訳(メタデータ) (2023-06-01T08:04:12Z) - Generate rather than Retrieve: Large Language Models are Strong Context
Generators [74.87021992611672]
本稿では,文書検索を大規模言語モデル生成器に置き換えることで,知識集約型タスクを解く新しい視点を提案する。
我々は,提案手法をgenRead (genRead) と呼び,まず大きな言語モデルに対して,与えられた質問に基づいて文脈文書を生成し,次に生成された文書を読み出して最終回答を生成する。
論文 参考訳(メタデータ) (2022-09-21T01:30:59Z) - Using Query Expansion in Manifold Ranking for Query-Oriented
Multi-Document Summarization [3.146785346730256]
本稿では,この問題を解くために,多様体ランキングに組み合わされたクエリ拡張手法を提案する。
本手法では,検索語自体と知識ベースであるWordNetの情報を同義語で拡張するだけでなく,文書自体の情報を様々な方法で拡張する。
さらに,単語の重複度と単語間の近接度を用いて文間の類似度を算出する。
論文 参考訳(メタデータ) (2021-07-31T02:20:44Z) - Answering Counting Queries over DL-Lite Ontologies [0.0]
本稿では,クエリをカウントする一般的な形式を導入し,従来の提案に関連付けるとともに,そのようなクエリに答えることの複雑さについて検討する。
我々は、複雑性境界の改善を確立させる、実践的に関連するいくつかの制約について検討する。
論文 参考訳(メタデータ) (2020-09-02T11:10:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。