論文の概要: Two-stage hybrid models for enhancing forecasting accuracy on heterogeneous time series
- arxiv url: http://arxiv.org/abs/2502.08600v1
- Date: Wed, 12 Feb 2025 17:39:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-13 13:47:35.959942
- Title: Two-stage hybrid models for enhancing forecasting accuracy on heterogeneous time series
- Title(参考訳): 不均一時系列の予測精度向上のための2段階ハイブリッドモデル
- Authors: Junru Ren, Shaomin Wu,
- Abstract要約: シリーズごとに構築されたローカルモデルと比較して、グローバルモデルは時系列を通して関連する情報を活用する。
異種データを扱う場合、グローバルモデルの利点は必ずしも実現されない。
時系列データが同質であるか不均一であるかを決定することは、実際は曖昧である。
本稿では,異種パターンを同定・モデル化する第2段階を含む2段階ハイブリッドモデルを提案する。
- 参考スコア(独自算出の注目度): 0.6506991840948217
- License:
- Abstract: Compared to local models built in a series-by-series manner, global models leverage relevant information across time series, resulting in improved forecasting performance and generalization capacity. Constructing global models on a set of time series is becoming mainstream in the field of time series forecasting. However, the advantages of global models may not always be realized when dealing with heterogeneous data. While they can adapt to heterogeneous datasets by increasing the model complexity, the model cannot be infinitely complex due to the finite sample size, which poses challenges for the application of global models. Additionally, determining whether the time series data is homogeneous or heterogeneous can be ambiguous in practice. To address these research gaps, this paper argues that the heterogeneity of the data should be defined by the global model used, and for each series, the portion not modelled by the global model represents heterogeneity. It further proposes two-stage hybrid models, which include a second stage to identify and model heterogeneous patterns. In this second stage, we can estimate either all local models or sub-global models across different domains divided based on heterogeneity. Experiments on four open datasets reveal that the proposed methods significantly outperform five existing models, indicating they contribute to fully unleash the potential of global models on heterogeneous datasets.
- Abstract(参考訳): 時系列的に構築された局所モデルと比較して、グローバルモデルは時系列を通して関連する情報を活用するため、予測性能と一般化能力が向上する。
時系列予測の分野では,グローバルモデルの構築が主流になりつつある。
しかし、異種データを扱う場合、グローバルモデルの利点は必ずしも実現されない。
モデル複雑性を増大させることで異種データセットに適応できるが、このモデルが無限に複雑になることはない。
さらに、時系列データが均一であるか不均一であるかを判断することは、実際は曖昧である。
これらの研究ギャップに対処するため、本論文では、データの不均一性は、使用するグローバルモデルによって定義されるべきであり、各シリーズにおいて、グローバルモデルによってモデル化されていない部分は、異種性を表す。
さらに、異種パターンを特定しモデル化する第2段階を含む2段階のハイブリッドモデルを提案する。
この第2段階において、不均一性に基づいて分割された異なる領域にわたるすべての局所モデルまたはサブグロバルモデルを推定することができる。
4つのオープンデータセットの実験により、提案手法は既存の5つのモデルを大幅に上回り、異種データセットのグローバルモデルの可能性を完全に解き放つことに寄与していることが明らかとなった。
関連論文リスト
- Learning Divergence Fields for Shift-Robust Graph Representations [73.11818515795761]
本研究では,相互依存データに対する問題に対して,学習可能な分散場を持つ幾何学的拡散モデルを提案する。
因果推論によって新たな学習目標が導出され、ドメイン間で無神経な相互依存の一般化可能なパターンを学習するためのモデルが導出される。
論文 参考訳(メタデータ) (2024-06-07T14:29:21Z) - Task Groupings Regularization: Data-Free Meta-Learning with Heterogeneous Pre-trained Models [83.02797560769285]
Data-Free Meta-Learning (DFML)は、トレーニング済みモデルのコレクションから、元のデータにアクセスせずに知識を抽出することを目的としている。
現在の手法は、事前訓練されたモデル間の不均一性を見落とし、タスクの衝突による性能低下につながることが多い。
論文 参考訳(メタデータ) (2024-05-26T13:11:55Z) - Context Neural Networks: A Scalable Multivariate Model for Time Series Forecasting [5.5711773076846365]
実世界の時系列は、しばしば孤立して取得できない複雑な相互依存性を示す。
本稿では,時系列モデルに関連性のある文脈洞察を付加する,効率的な線形複雑化手法であるContext Neural Networkを紹介する。
論文 参考訳(メタデータ) (2024-05-12T00:21:57Z) - Dataless Knowledge Fusion by Merging Weights of Language Models [51.8162883997512]
微調整された事前学習言語モデルは、下流のNLPモデルを構築するための主要なパラダイムとなっている。
これは、より優れた単一モデルを生み出すために、個々のモデル間で知識を融合させる障壁を生み出します。
パラメータ空間のモデルをマージするデータレス知識融合法を提案する。
論文 参考訳(メタデータ) (2022-12-19T20:46:43Z) - Towards Understanding and Mitigating Dimensional Collapse in Heterogeneous Federated Learning [112.69497636932955]
フェデレートラーニングは、プライバシを考慮したデータ共有を必要とせずに、さまざまなクライアントでモデルをトレーニングすることを目的としている。
本研究では,データの不均一性がグローバル集約モデルの表現に与える影響について検討する。
フェデレーション学習における次元的崩壊を効果的に緩和する新しい手法である sc FedDecorr を提案する。
論文 参考訳(メタデータ) (2022-10-01T09:04:17Z) - Ensembles of Localised Models for Time Series Forecasting [7.199741890914579]
本研究では,一般GFMや一変数モデルを用いたアンサンブル手法の活用について検討する。
私たちの作業は、クラスタリングシリーズやクラスタごとに別々のサブモデルのトレーニングなど、関連する現在のアプローチを体系化し比較します。
複数のGFMを複数のクラスタでトレーニングするクラスタアンサンブルの新しい方法論を提案します。
論文 参考訳(メタデータ) (2020-12-30T06:33:51Z) - Global Models for Time Series Forecasting: A Simulation Study [2.580765958706854]
自動回帰(AR)や季節ARのような単純なデータ生成プロセス(DGP)からカオスロジスティックマップ、自己興奮型閾値自動回帰、マッキーグラス方程式といった複雑なDGPまで、時系列をシミュレートする。
データセットの長さと系列数は、さまざまなシナリオで変化します。
我々はこれらのデータセットに対して,Recurrent Neural Networks (RNN), Feed-Forward Neural Networks, Pooled Regression (PR) Model, Light Gradient Boosting Models (LGBM)などの大域的予測モデルを用いて実験を行った。
論文 参考訳(メタデータ) (2020-12-23T04:45:52Z) - Unsupervised Learning of Global Factors in Deep Generative Models [6.362733059568703]
非i.i.dに基づく新しい深層生成モデルを提案する。
変分オートエンコーダ。
モデルがドメインアライメントを行い、相関関係を見つけ、異なるデータベース間で補間することを示す。
また、非自明な基礎構造を持つ観測群を区別するグローバル空間の能力についても研究する。
論文 参考訳(メタデータ) (2020-12-15T11:55:31Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
現在の自己エンコーダに基づく非絡み合い表現学習法は、(集合体)後部をペナルティ化し、潜伏因子の統計的独立を促進することで、非絡み合いを実現する。
本稿では,不整合因子をペナルティに基づく不整合表現学習法を用いて学習する,新しい多段階モデリング手法を提案する。
次に、低品質な再構成を、欠落した関連潜伏変数をモデル化するために訓練された別の深層生成モデルで改善する。
論文 参考訳(メタデータ) (2020-10-25T18:51:15Z) - Robust Finite Mixture Regression for Heterogeneous Targets [70.19798470463378]
本稿では,サンプルクラスタの探索と,複数の不完全な混合型ターゲットを同時にモデル化するFMRモデルを提案する。
我々は、高次元の学習フレームワークの下で、無症状のオラクルのパフォーマンス境界をモデルに提供します。
その結果,我々のモデルは最先端の性能を達成できることがわかった。
論文 参考訳(メタデータ) (2020-10-12T03:27:07Z) - VAEM: a Deep Generative Model for Heterogeneous Mixed Type Data [16.00692074660383]
VAEMは2段階的に訓練された深層生成モデルである。
VAEMは、深層生成モデルをうまく展開できる現実世界のアプリケーションの範囲を広げることを示す。
論文 参考訳(メタデータ) (2020-06-21T23:47:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。