EEG Artifact Detection and Correction with Deep Autoencoders
- URL: http://arxiv.org/abs/2502.08686v1
- Date: Wed, 12 Feb 2025 12:06:36 GMT
- Title: EEG Artifact Detection and Correction with Deep Autoencoders
- Authors: David AquiluƩ-Llorens, Aureli Soria-Frisch,
- Abstract summary: LSTEEG is a novel LSTM-based autoencoder for the detection and correction of artifacts in EEG signals.
Our methodology enhances the interpretability and utility of the autoencoder's latent space.
This research advances the field of efficient and accurate multi-channel EEG preprocessing.
- Score: 0.0
- License:
- Abstract: EEG signals convey important information about brain activity both in healthy and pathological conditions. However, they are inherently noisy, which poses significant challenges for accurate analysis and interpretation. Traditional EEG artifact removal methods, while effective, often require extensive expert intervention. This study presents LSTEEG, a novel LSTM-based autoencoder designed for the detection and correction of artifacts in EEG signals. Leveraging deep learning, particularly LSTM layers, LSTEEG captures non-linear dependencies in sequential EEG data. LSTEEG demonstrates superior performance in both artifact detection and correction tasks compared to other state-of-the-art convolutional autoencoders. Our methodology enhances the interpretability and utility of the autoencoder's latent space, enabling data-driven automated artefact removal in EEG its application in downstream tasks. This research advances the field of efficient and accurate multi-channel EEG preprocessing, and promotes the implementation and usage of automated EEG analysis pipelines for brain health applications.
Related papers
- ART: Artifact Removal Transformer for Reconstructing Noise-Free Multichannel Electroencephalographic Signals [0.10499611180329801]
Artifact removal in electroencephalography (EEG) significantly impacts neuroscientific analysis and brain-computer interface (BCI) performance.
This study presents an innovative EEG denoising model employing transformer architecture to adeptly capture the transient millisecond-scale dynamics characteristic of EEG signals.
Our evaluations confirm that ART surpasses other deep-learning-based artifact removal methods, setting a new benchmark in EEG signal processing.
arXiv Detail & Related papers (2024-09-11T15:05:40Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
We introduce a self-supervised deep learning architecture to segment catheters in longitudinal ultrasound images.
The network architecture builds upon AiAReSeg, a segmentation transformer built with the Attention in Attention mechanism.
We validated our model on a test dataset, consisting of unseen synthetic data and images collected from silicon aorta phantoms.
arXiv Detail & Related papers (2024-03-21T15:13:36Z) - ARNN: Attentive Recurrent Neural Network for Multi-channel EEG Signals to Identify Epileptic Seizures [2.3907933297014927]
An Attention Recurrent Neural Network (ARNN) is proposed that can process a large amount of data efficiently and accurately.
ARNN cell recurrently applies attention layers along a sequence and has linear complexity with the sequence length.
This framework is inspired in part by the attention layer and long short-term memory (LSTM) cells, but it scales this typical cell up by several orders to parallelize for multi-channel EEG signals.
arXiv Detail & Related papers (2024-03-05T19:15:17Z) - DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
Auditory Attention Detection (AAD) aims to detect target speaker from brain signals in a multi-speaker environment.
Current approaches primarily rely on traditional convolutional neural network designed for processing Euclidean data like images.
This paper proposes a dynamical graph self-distillation (DGSD) approach for AAD, which does not require speech stimuli as input.
arXiv Detail & Related papers (2023-09-07T13:43:46Z) - EOG Artifact Removal from Single and Multi-channel EEG Recordings
through the combination of Long Short-Term Memory Networks and Independent
Component Analysis [0.0]
We present a novel methodology that combines a long short-term memory (LSTM)-based neural network with ICA to address the challenge of EOG artifact removal from EEG signals.
Our approach aims to accomplish two primary objectives: 1) estimate the horizontal and vertical EOG signals from the contaminated EEG data, and 2) employ ICA to eliminate the estimated EOG signals from the EEG.
arXiv Detail & Related papers (2023-08-25T13:32:28Z) - fMRI from EEG is only Deep Learning away: the use of interpretable DL to
unravel EEG-fMRI relationships [68.8204255655161]
We present an interpretable domain grounded solution to recover the activity of several subcortical regions from multichannel EEG data.
We recover individual spatial and time-frequency patterns of scalp EEG predictive of the hemodynamic signal in the subcortical nuclei.
arXiv Detail & Related papers (2022-10-23T15:11:37Z) - CLEEGN: A Convolutional Neural Network for Plug-and-Play Automatic EEG
Reconstruction [1.6999370482438731]
We have proposed CLEEGN, a novel convolutional neural network for plug-and-play automatic EEG reconstruction.
The performance of CLEEGN was validated using multiple evaluations including waveform observation, reconstruction error assessment, and decoding accuracy.
We foresee pervasive applications of CLEEGN in prospective works of online plug-and-play EEG decoding and analysis.
arXiv Detail & Related papers (2022-10-12T07:56:09Z) - Task-oriented Self-supervised Learning for Anomaly Detection in
Electroencephalography [51.45515911920534]
A task-oriented self-supervised learning approach is proposed to train a more effective anomaly detector.
A specific two branch convolutional neural network with larger kernels is designed as the feature extractor.
The effectively designed and trained feature extractor has shown to be able to extract better feature representations from EEGs.
arXiv Detail & Related papers (2022-07-04T13:15:08Z) - Grasp-and-Lift Detection from EEG Signal Using Convolutional Neural
Network [1.869097450593631]
This article has automated the hand movement activity viz GAL detection method from the 32-channel EEG signals.
The proposed pipeline essentially combines preprocessing and end-to-end detection steps, eliminating the requirement of hand-crafted feature engineering.
arXiv Detail & Related papers (2022-02-12T19:27:06Z) - Uncovering the structure of clinical EEG signals with self-supervised
learning [64.4754948595556]
Supervised learning paradigms are often limited by the amount of labeled data that is available.
This phenomenon is particularly problematic in clinically-relevant data, such as electroencephalography (EEG)
By extracting information from unlabeled data, it might be possible to reach competitive performance with deep neural networks.
arXiv Detail & Related papers (2020-07-31T14:34:47Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
Deep learning (DL) algorithms are gaining weight in academic and industrial settings.
We demonstrate DL can be successfully applied to low interpretative tasks by embedding ECG detection and delineation onto a segmentation framework.
The model was trained using PhysioNet's QT database, comprised of 105 ambulatory ECG recordings.
arXiv Detail & Related papers (2020-05-11T16:29:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.