CLEEGN: A Convolutional Neural Network for Plug-and-Play Automatic EEG
Reconstruction
- URL: http://arxiv.org/abs/2210.05988v2
- Date: Wed, 21 Feb 2024 00:21:54 GMT
- Title: CLEEGN: A Convolutional Neural Network for Plug-and-Play Automatic EEG
Reconstruction
- Authors: Pin-Hua Lai, Bo-Shan Wang, Wei-Chun Yang, Hsiang-Chieh Tsou, Chun-Shu
Wei
- Abstract summary: We have proposed CLEEGN, a novel convolutional neural network for plug-and-play automatic EEG reconstruction.
The performance of CLEEGN was validated using multiple evaluations including waveform observation, reconstruction error assessment, and decoding accuracy.
We foresee pervasive applications of CLEEGN in prospective works of online plug-and-play EEG decoding and analysis.
- Score: 1.6999370482438731
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Human electroencephalography (EEG) is a brain monitoring modality that senses
cortical neuroelectrophysiological activity in high-temporal resolution. One of
the greatest challenges posed in applications of EEG is the unstable signal
quality susceptible to inevitable artifacts during recordings. To date, most
existing techniques for EEG artifact removal and reconstruction are applicable
to offline analysis solely, or require individualized training data to
facilitate online reconstruction. We have proposed CLEEGN, a novel
convolutional neural network for plug-and-play automatic EEG reconstruction.
CLEEGN is based on a subject-independent pre-trained model using existing data
and can operate on a new user without any further calibration. The performance
of CLEEGN was validated using multiple evaluations including waveform
observation, reconstruction error assessment, and decoding accuracy on
well-studied labeled datasets. The results of simulated online validation
suggest that, even without any calibration, CLEEGN can largely preserve
inherent brain activity and outperforms leading online/offline artifact removal
methods in the decoding accuracy of reconstructed EEG data. In addition,
visualization of model parameters and latent features exhibit the model
behavior and reveal explainable insights related to existing knowledge of
neuroscience. We foresee pervasive applications of CLEEGN in prospective works
of online plug-and-play EEG decoding and analysis.
Related papers
- ART: Artifact Removal Transformer for Reconstructing Noise-Free Multichannel Electroencephalographic Signals [0.10499611180329801]
Artifact removal in electroencephalography (EEG) significantly impacts neuroscientific analysis and brain-computer interface (BCI) performance.
This study presents an innovative EEG denoising model employing transformer architecture to adeptly capture the transient millisecond-scale dynamics characteristic of EEG signals.
Our evaluations confirm that ART surpasses other deep-learning-based artifact removal methods, setting a new benchmark in EEG signal processing.
arXiv Detail & Related papers (2024-09-11T15:05:40Z) - RISE-iEEG: Robust to Inter-Subject Electrodes Implantation Variability iEEG Classifier [0.0]
RISE-iEEG stands for Robust Inter-Subject Electrode Implantation Variability iEEG.
We developed an iEEG decoder model that can be applied across multiple patients' data without requiring the coordinates of electrode for each patient.
Our analysis shows that the performance of RISE-iEEG is 10% higher than that of HTNet and EEGNet in terms of F1 score.
arXiv Detail & Related papers (2024-08-12T18:33:19Z) - REST: Efficient and Accelerated EEG Seizure Analysis through Residual State Updates [54.96885726053036]
This paper introduces a novel graph-based residual state update mechanism (REST) for real-time EEG signal analysis.
By leveraging a combination of graph neural networks and recurrent structures, REST efficiently captures both non-Euclidean geometry and temporal dependencies within EEG data.
Our model demonstrates high accuracy in both seizure detection and classification tasks.
arXiv Detail & Related papers (2024-06-03T16:30:19Z) - hvEEGNet: exploiting hierarchical VAEs on EEG data for neuroscience
applications [3.031375888004876]
Two main issues challenge the existing DL-based modeling methods for EEG.
High variability between subjects and low signal-to-noise ratio make it difficult to ensure a good quality in the EEG data.
We propose two variational autoencoder models, namely vEEGNet-ver3 and hvEEGNet, to target the problem of high-fidelity EEG reconstruction.
arXiv Detail & Related papers (2023-11-20T15:36:31Z) - EEG-NeXt: A Modernized ConvNet for The Classification of Cognitive
Activity from EEG [0.0]
One of the main challenges in electroencephalogram (EEG) based brain-computer interface (BCI) systems is learning the subject/session invariant features to classify cognitive activities.
We propose a novel end-to-end machine learning pipeline, EEG-NeXt, which facilitates transfer learning.
arXiv Detail & Related papers (2022-12-08T10:15:52Z) - fMRI from EEG is only Deep Learning away: the use of interpretable DL to
unravel EEG-fMRI relationships [68.8204255655161]
We present an interpretable domain grounded solution to recover the activity of several subcortical regions from multichannel EEG data.
We recover individual spatial and time-frequency patterns of scalp EEG predictive of the hemodynamic signal in the subcortical nuclei.
arXiv Detail & Related papers (2022-10-23T15:11:37Z) - Task-oriented Self-supervised Learning for Anomaly Detection in
Electroencephalography [51.45515911920534]
A task-oriented self-supervised learning approach is proposed to train a more effective anomaly detector.
A specific two branch convolutional neural network with larger kernels is designed as the feature extractor.
The effectively designed and trained feature extractor has shown to be able to extract better feature representations from EEGs.
arXiv Detail & Related papers (2022-07-04T13:15:08Z) - Improving self-supervised pretraining models for epileptic seizure
detection from EEG data [0.23624125155742057]
This paper presents various self-supervision strategies to enhance the performance of a time-series based Diffusion convolution neural network (DCRNN) model.
The learned weights in the self-supervision pretraining phase can be transferred to the supervised training phase to boost the model's prediction capability.
arXiv Detail & Related papers (2022-06-28T17:15:49Z) - A Novel Transferability Attention Neural Network Model for EEG Emotion
Recognition [51.203579838210885]
We propose a transferable attention neural network (TANN) for EEG emotion recognition.
TANN learns the emotional discriminative information by highlighting the transferable EEG brain regions data and samples adaptively.
This can be implemented by measuring the outputs of multiple brain-region-level discriminators and one single sample-level discriminator.
arXiv Detail & Related papers (2020-09-21T02:42:30Z) - Uncovering the structure of clinical EEG signals with self-supervised
learning [64.4754948595556]
Supervised learning paradigms are often limited by the amount of labeled data that is available.
This phenomenon is particularly problematic in clinically-relevant data, such as electroencephalography (EEG)
By extracting information from unlabeled data, it might be possible to reach competitive performance with deep neural networks.
arXiv Detail & Related papers (2020-07-31T14:34:47Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
Deep learning (DL) algorithms are gaining weight in academic and industrial settings.
We demonstrate DL can be successfully applied to low interpretative tasks by embedding ECG detection and delineation onto a segmentation framework.
The model was trained using PhysioNet's QT database, comprised of 105 ambulatory ECG recordings.
arXiv Detail & Related papers (2020-05-11T16:29:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.