論文の概要: Acoustic Wave Manipulation Through Sparse Robotic Actuation
- arxiv url: http://arxiv.org/abs/2502.08784v1
- Date: Wed, 12 Feb 2025 20:54:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-14 13:45:00.601199
- Title: Acoustic Wave Manipulation Through Sparse Robotic Actuation
- Title(参考訳): スパースロボットアクチュエータによる音波操作
- Authors: Tristan Shah, Noam Smilovich, Samer Gerges, Feruza Amirkulova, Stas Tiomkin,
- Abstract要約: 本研究では,空間的にスパースなアクチュエータを通して波に影響を及ぼすことのできるロボットによって部分的に観察される音波の操作について検討する。
この問題は、新しい人工材料、超音波切断ツール、エネルギー収穫などの用途の設計に大きな可能性を秘めている。
本研究では,特定の領域に分散した音響エネルギーを集中させるか,所望のタスクに応じて抑制するかのどちらかに適用可能な,効率的なデータ駆動型ロボット学習法を開発した。
- 参考スコア(独自算出の注目度): 2.621434923709917
- License:
- Abstract: Recent advancements in robotics, control, and machine learning have facilitated progress in the challenging area of object manipulation. These advancements include, among others, the use of deep neural networks to represent dynamics that are partially observed by robot sensors, as well as effective control using sparse control signals. In this work, we explore a more general problem: the manipulation of acoustic waves, which are partially observed by a robot capable of influencing the waves through spatially sparse actuators. This problem holds great potential for the design of new artificial materials, ultrasonic cutting tools, energy harvesting, and other applications. We develop an efficient data-driven method for robot learning that is applicable to either focusing scattered acoustic energy in a designated region or suppressing it, depending on the desired task. The proposed method is better in terms of a solution quality and computational complexity as compared to a state-of-the-art learning based method for manipulation of dynamical systems governed by partial differential equations. Furthermore our proposed method is competitive with a classical semi-analytical method in acoustics research on the demonstrated tasks. We have made the project code publicly available, along with a web page featuring video demonstrations: https://gladisor.github.io/waves/.
- Abstract(参考訳): 近年のロボティクス、制御、機械学習の進歩は、オブジェクト操作の困難な領域における進歩を促進している。
これらの進歩には、ロボットセンサーによって部分的に観察されるダイナミクスを表現するためのディープニューラルネットワークの使用や、スパース制御信号を用いた効果的な制御が含まれる。
本研究では,空間的にスパースなアクチュエータを通して波に影響を及ぼすことのできるロボットによって部分的に観察される,音波の操作という,より一般的な問題について検討する。
この問題は、新しい人工材料、超音波切断ツール、エネルギー収穫などの用途の設計に大きな可能性を秘めている。
本研究では,特定の領域に分散した音響エネルギーを集中させるか,所望のタスクに応じて抑制するかのどちらかに適用可能な,効率的なデータ駆動型ロボット学習法を開発した。
提案手法は, 偏微分方程式が支配する力学系を操作するための最先端の学習法と比較して, 解の質と計算複雑性の点で優れている。
さらに,提案手法は従来の半解析手法と競合する。
プロジェクトコードを公開し、ビデオデモを特徴とするWebページも公開しました。
関連論文リスト
- Moto: Latent Motion Token as the Bridging Language for Robot Manipulation [66.18557528695924]
我々はMotoを紹介する。Motoは、映像コンテンツをラテントモーションTokenizerでラテントモーションTokenシーケンスに変換する。
我々は、モーショントークンによるMoto-GPTの事前学習を行い、多様な視覚的動きの知識を捉えることができる。
実際のロボット動作に先立って学習した動きを転送するために、潜伏した動きのトークン予測と実際のロボット制御をシームレスにブリッジするコファインチューニング戦略を実装した。
論文 参考訳(メタデータ) (2024-12-05T18:57:04Z) - Unsupervised Learning of Effective Actions in Robotics [0.9374652839580183]
ロボット工学における現在の最先端のアクション表現は、ロボットのアクションに対する適切な効果駆動学習を欠いている。
連続運動空間の離散化と「アクションプロトタイプ」生成のための教師なしアルゴリズムを提案する。
シミュレーションされた階段登上補強学習課題について,本手法の評価を行った。
論文 参考訳(メタデータ) (2024-04-03T13:28:52Z) - Bridging Active Exploration and Uncertainty-Aware Deployment Using
Probabilistic Ensemble Neural Network Dynamics [11.946807588018595]
本稿では,活発な探索と不確実性を考慮した展開を橋渡しするモデルベース強化学習フレームワークを提案する。
探索と展開の対立する2つのタスクは、最先端のサンプリングベースのMPCによって最適化されている。
自動運転車と車輪付きロボットの両方で実験を行い、探索と展開の両方に有望な結果を示します。
論文 参考訳(メタデータ) (2023-05-20T17:20:12Z) - Active Exploration for Robotic Manipulation [40.39182660794481]
本稿では,スパース・リワード型ロボット操作作業における効率的な学習を可能にするモデルに基づく能動探索手法を提案する。
我々は,提案アルゴリズムをシミュレーションおよび実ロボットで評価し,スクラッチから本手法を訓練した。
論文 参考訳(メタデータ) (2022-10-23T18:07:51Z) - Active Predicting Coding: Brain-Inspired Reinforcement Learning for
Sparse Reward Robotic Control Problems [79.07468367923619]
ニューラルジェネレーティブ・コーディング(NGC)の神経認知計算フレームワークによるロボット制御へのバックプロパゲーションフリーアプローチを提案する。
我々は、スパース報酬から動的オンライン学習を容易にする強力な予測符号化/処理回路から完全に構築されたエージェントを設計する。
提案するActPCエージェントは,スパース(外部)報酬信号に対して良好に動作し,複数の強力なバックプロップベースのRLアプローチと競合し,性能が優れていることを示す。
論文 参考訳(メタデータ) (2022-09-19T16:49:32Z) - OSCAR: Data-Driven Operational Space Control for Adaptive and Robust
Robot Manipulation [50.59541802645156]
オペレーショナル・スペース・コントロール(OSC)は、操作のための効果的なタスクスペース・コントローラとして使われてきた。
本稿では,データ駆動型OSCのモデル誤差を補償するOSC for Adaptation and Robustness (OSCAR)を提案する。
本手法は,様々なシミュレーション操作問題に対して評価し,制御器のベースラインの配列よりも大幅に改善されていることを示す。
論文 参考訳(メタデータ) (2021-10-02T01:21:38Z) - What Matters in Learning from Offline Human Demonstrations for Robot
Manipulation [64.43440450794495]
ロボット操作のための6つのオフライン学習アルゴリズムについて広範な研究を行う。
我々の研究は、オフラインの人間のデータから学習する際の最も重要な課題を分析します。
人間のデータセットから学ぶ機会を強調します。
論文 参考訳(メタデータ) (2021-08-06T20:48:30Z) - Transformer-based deep imitation learning for dual-arm robot
manipulation [5.3022775496405865]
デュアルアームの操作設定では、追加のロボットマニピュレータによって引き起こされる状態次元の増加が注意をそらす。
本稿では、逐次入力における要素間の依存関係を計算し、重要な要素に焦点をあてる自己認識機構を用いてこの問題に対処する。
自己注意型アーキテクチャの変種であるTransformerは、実世界のデュアルアーム操作タスクを解決するために、深層模倣学習に適用される。
論文 参考訳(メタデータ) (2021-08-01T07:42:39Z) - Neural Dynamic Policies for End-to-End Sensorimotor Learning [51.24542903398335]
感覚運動制御における現在の主流パラダイムは、模倣であれ強化学習であれ、生の行動空間で政策を直接訓練することである。
軌道分布空間の予測を行うニューラル・ダイナミック・ポリシー(NDP)を提案する。
NDPは、いくつかのロボット制御タスクにおいて、効率と性能の両面で、これまでの最先端よりも優れている。
論文 参考訳(メタデータ) (2020-12-04T18:59:32Z) - Deep Imitation Learning for Bimanual Robotic Manipulation [70.56142804957187]
本稿では,ロボットによるバイマニュアル操作のための深層模倣学習フレームワークを提案する。
中心となる課題は、操作スキルを異なる場所にあるオブジェクトに一般化することである。
i)マルチモーダルダイナミクスを要素運動プリミティブに分解し、(ii)リカレントグラフニューラルネットワークを用いて各プリミティブをパラメータ化して相互作用を捕捉し、(iii)プリミティブを逐次的に構成する高レベルプランナと、プリミティブダイナミクスと逆運動学制御を組み合わせた低レベルコントローラを統合することを提案する。
論文 参考訳(メタデータ) (2020-10-11T01:40:03Z) - Low Dimensional State Representation Learning with Reward-shaped Priors [7.211095654886105]
本研究では,観測結果から低次元状態空間への写像の学習を目的とした手法を提案する。
このマッピングは、環境とタスクの事前知識を組み込むために形作られた損失関数を用いて教師なしの学習で学習される。
本手法は,シミュレーション環境における移動ロボットナビゲーションタスクおよび実ロボット上でのテストを行う。
論文 参考訳(メタデータ) (2020-07-29T13:00:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。