A Systematic Review on the Evaluation of Large Language Models in Theory of Mind Tasks
- URL: http://arxiv.org/abs/2502.08796v1
- Date: Wed, 12 Feb 2025 21:19:30 GMT
- Title: A Systematic Review on the Evaluation of Large Language Models in Theory of Mind Tasks
- Authors: Karahan Sarıtaş, Kıvanç Tezören, Yavuz Durmazkeser,
- Abstract summary: This systematic review synthesizes current efforts to assess large language models' (LLMs) ability to perform ToM tasks.<n>A recurring theme in the literature reveals that while LLMs demonstrate emerging competence in ToM tasks, significant gaps persist in their emulation of human cognitive abilities.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, evaluating the Theory of Mind (ToM) capabilities of large language models (LLMs) has received significant attention within the research community. As the field rapidly evolves, navigating the diverse approaches and methodologies has become increasingly complex. This systematic review synthesizes current efforts to assess LLMs' ability to perform ToM tasks, an essential aspect of human cognition involving the attribution of mental states to oneself and others. Despite notable advancements, the proficiency of LLMs in ToM remains a contentious issue. By categorizing benchmarks and tasks through a taxonomy rooted in cognitive science, this review critically examines evaluation techniques, prompting strategies, and the inherent limitations of LLMs in replicating human-like mental state reasoning. A recurring theme in the literature reveals that while LLMs demonstrate emerging competence in ToM tasks, significant gaps persist in their emulation of human cognitive abilities.
Related papers
- Theory of Mind in Large Language Models: Assessment and Enhancement [14.41464477095448]
Large Language Models (LLMs) become increasingly integrated into daily life.
It is crucial to assess and enhance their capacity to interpret and respond to human mental states.
arXiv Detail & Related papers (2025-04-26T10:17:48Z) - A Call for New Recipes to Enhance Spatial Reasoning in MLLMs [85.67171333213301]
Multimodal Large Language Models (MLLMs) have demonstrated impressive performance in general vision-language tasks.
Recent studies have exposed critical limitations in their spatial reasoning capabilities.
This deficiency in spatial reasoning significantly constrains MLLMs' ability to interact effectively with the physical world.
arXiv Detail & Related papers (2025-04-21T11:48:39Z) - Rethinking Theory of Mind Benchmarks for LLMs: Towards A User-Centered Perspective [24.27038998164743]
Theory-of-Mind (ToM) tasks are designed for humans to benchmark LLM's ToM capabilities.
This approach has a number of limitations.
Taking a human-computer interaction (HCI) perspective, these limitations prompt us to rethink the definition and criteria of ToM in ToM benchmarks.
arXiv Detail & Related papers (2025-04-15T03:44:43Z) - VisFactor: Benchmarking Fundamental Visual Cognition in Multimodal Large Language Models [62.667142971664575]
We introduce VisFactor, a novel benchmark derived from the Factor-Referenced Cognitive Test (FRCT)
VisFactor digitalizes vision-related FRCT subtests to systematically evaluate MLLMs across essential visual cognitive tasks.
We present a comprehensive evaluation of state-of-the-art MLLMs, such as GPT-4o, Gemini-Pro, and Qwen-VL.
arXiv Detail & Related papers (2025-02-23T04:21:32Z) - A Survey on Human-Centric LLMs [11.49752599240738]
Large language models (LLMs) can simulate human cognition and behavior.
This survey focuses on their performance in both individual tasks and collective tasks.
arXiv Detail & Related papers (2024-11-20T12:34:44Z) - ToMBench: Benchmarking Theory of Mind in Large Language Models [41.565202027904476]
ToM is the cognitive capability to perceive and ascribe mental states to oneself and others.<n>Existing ToM evaluations are hindered by challenges such as constrained scope, subjective judgment, and unintended contamination.<n>We introduce ToMBench with three key characteristics: a systematic evaluation framework encompassing 8 tasks and 31 abilities in social cognition, a multiple-choice question format to support automated and unbiased evaluation, and a build-from-scratch bilingual inventory to strictly avoid data leakage.
arXiv Detail & Related papers (2024-02-23T02:05:46Z) - MR-GSM8K: A Meta-Reasoning Benchmark for Large Language Model Evaluation [60.65820977963331]
We introduce a novel evaluation paradigm for Large Language Models (LLMs)
This paradigm shifts the emphasis from result-oriented assessments, which often neglect the reasoning process, to a more comprehensive evaluation.
By applying this paradigm in the GSM8K dataset, we have developed the MR-GSM8K benchmark.
arXiv Detail & Related papers (2023-12-28T15:49:43Z) - Think Twice: Perspective-Taking Improves Large Language Models'
Theory-of-Mind Capabilities [63.90227161974381]
SimToM is a novel prompting framework inspired by Simulation Theory's notion of perspective-taking.
Our approach, which requires no additional training and minimal prompt-tuning, shows substantial improvement over existing methods.
arXiv Detail & Related papers (2023-11-16T22:49:27Z) - Exploring the Cognitive Knowledge Structure of Large Language Models: An
Educational Diagnostic Assessment Approach [50.125704610228254]
Large Language Models (LLMs) have not only exhibited exceptional performance across various tasks, but also demonstrated sparks of intelligence.
Recent studies have focused on assessing their capabilities on human exams and revealed their impressive competence in different domains.
We conduct an evaluation using MoocRadar, a meticulously annotated human test dataset based on Bloom taxonomy.
arXiv Detail & Related papers (2023-10-12T09:55:45Z) - A Survey on Evaluation of Large Language Models [87.60417393701331]
Large language models (LLMs) are gaining increasing popularity in both academia and industry.
This paper focuses on three key dimensions: what to evaluate, where to evaluate, and how to evaluate.
arXiv Detail & Related papers (2023-07-06T16:28:35Z) - Understanding Social Reasoning in Language Models with Language Models [34.068368860882586]
We present a novel framework for generating evaluations with Large Language Models (LLMs) by populating causal templates.
We create a new social reasoning benchmark (BigToM) for LLMs which consists of 25 controls and 5,000 model-written evaluations.
We find that human participants rate the quality of our benchmark higher than previous crowd-sourced evaluations and comparable to expert-written evaluations.
arXiv Detail & Related papers (2023-06-21T16:42:15Z) - Clever Hans or Neural Theory of Mind? Stress Testing Social Reasoning in
Large Language Models [82.50173296858377]
Many anecdotal examples were used to suggest newer large language models (LLMs) like ChatGPT and GPT-4 exhibit Neural Theory-of-Mind (N-ToM)
We investigate the extent of LLMs' N-ToM through an extensive evaluation on 6 tasks and find that while LLMs exhibit certain N-ToM abilities, this behavior is far from being robust.
arXiv Detail & Related papers (2023-05-24T06:14:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.