Dynamic Incentive Allocation for City-scale Deep Decarbonization
- URL: http://arxiv.org/abs/2502.08877v1
- Date: Thu, 13 Feb 2025 01:25:49 GMT
- Title: Dynamic Incentive Allocation for City-scale Deep Decarbonization
- Authors: Anupama Sitaraman, Adam Lechowicz, Noman Bashir, Xutong Liu, Mohammad Hajiesmaili, Prashant Shenoy,
- Abstract summary: Governments and utilities have designed incentives to stimulate the adoption of decarbonization technologies such as rooftop PV and heat pumps.
We present a novel data-driven approach that adopts a holistic, emissions-based and city-scale perspective on decarbonization.
We show that our framework can accommodate equity-aware constraints to equitably allocate incentives across socioeconomic groups, achieving 78.84% of the carbon reductions of the optimal solution.
- Score: 4.146808838321321
- License:
- Abstract: Greenhouse gas emissions from the residential sector represent a significant fraction of global emissions. Governments and utilities have designed incentives to stimulate the adoption of decarbonization technologies such as rooftop PV and heat pumps. However, studies have shown that many of these incentives are inefficient since a substantial fraction of spending does not actually promote adoption, and incentives are not equitably distributed across socioeconomic groups. We present a novel data-driven approach that adopts a holistic, emissions-based and city-scale perspective on decarbonization. We propose an optimization model that dynamically allocates a total incentive budget to households to directly maximize city-wide carbon reduction. We leverage techniques for the multi-armed bandits problem to estimate human factors, such as a household's willingness to adopt new technologies given a certain incentive. We apply our proposed framework to a city in the Northeast U.S., using real household energy data, grid carbon intensity data, and future price scenarios. We show that our learning-based technique significantly outperforms an example status quo incentive scheme, achieving up to 32.23% higher carbon reductions. We show that our framework can accommodate equity-aware constraints to equitably allocate incentives across socioeconomic groups, achieving 78.84% of the carbon reductions of the optimal solution on average.
Related papers
- Carbon Market Simulation with Adaptive Mechanism Design [55.25103894620696]
A carbon market is a market-based tool that incentivizes economic agents to align individual profits with the global utility.
We propose an adaptive mechanism design framework, simulating the market using hierarchical, model-free multi-agent reinforcement learning (MARL)
Numerical results show MARL enables government agents to balance productivity, equality, and carbon emissions.
arXiv Detail & Related papers (2024-06-12T05:08:51Z) - Generative AI for Low-Carbon Artificial Intelligence of Things with Large Language Models [67.0243099823109]
Generative AI (GAI) holds immense potential to reduce carbon emissions of Artificial Intelligence of Things (AIoT)
In this article, we explore the potential of GAI for carbon emissions reduction and propose a novel GAI-enabled solution for low-carbon AIoT.
We propose a Large Language Model (LLM)-enabled carbon emission optimization framework, in which we design pluggable LLM and Retrieval Augmented Generation (RAG) modules.
arXiv Detail & Related papers (2024-04-28T05:46:28Z) - Equitable Network-Aware Decarbonization of Residential Heating at City
Scale [0.9099663022952497]
We present a network-aware optimization framework for decarbonizing residential heating at city scale.
We apply our framework to a city in the New England region of the U.S. using real-world gas usage, electric usage, and grid infrastructure data.
arXiv Detail & Related papers (2023-01-11T22:55:30Z) - Measuring the Carbon Intensity of AI in Cloud Instances [91.28501520271972]
We provide a framework for measuring software carbon intensity, and propose to measure operational carbon emissions.
We evaluate a suite of approaches for reducing emissions on the Microsoft Azure cloud compute platform.
arXiv Detail & Related papers (2022-06-10T17:04:04Z) - (Private)-Retroactive Carbon Pricing [(P)ReCaP]: A Market-based Approach
for Climate Finance and Risk Assessment [64.83786252406105]
Retrospective Social Cost of Carbon Updating (ReSCCU) is a novel mechanism that corrects for limitations as empirically measured evidence is collected.
To implement ReSCCU in the context of carbon taxation, we propose Retroactive Carbon Pricing (ReCaP)
To alleviate systematic risks and minimize government involvement, we introduce the Private ReCaP (PReCaP) prediction market.
arXiv Detail & Related papers (2022-05-02T06:02:13Z) - IMPACT: Integrated Bottom-Up Greenhouse Gas Emission Pathways for Cities [0.0]
IMPACT pathways integrate technology adoption policies with zoning policies, climate change, and grid decarbonization scenarios.
We identify an emission premium for sprawling and show that adverse policy combinations exist that can exhibit rebounding emissions over time.
arXiv Detail & Related papers (2022-01-31T02:30:39Z) - Modelling the transition to a low-carbon energy supply [91.3755431537592]
A transition to a low-carbon electricity supply is crucial to limit the impacts of climate change.
Reducing carbon emissions could help prevent the world from reaching a tipping point, where runaway emissions are likely.
Runaway emissions could lead to extremes in weather conditions around the world.
arXiv Detail & Related papers (2021-09-25T12:37:05Z) - Optimizing carbon tax for decentralized electricity markets using an
agent-based model [69.3939291118954]
Averting the effects of anthropogenic climate change requires a transition from fossil fuels to low-carbon technology.
Carbon taxes have been shown to be an efficient way to aid in this transition.
We use the NSGA-II genetic algorithm to minimize average electricity price and relative carbon intensity of the electricity mix.
arXiv Detail & Related papers (2020-05-28T06:54:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.