(Private)-Retroactive Carbon Pricing [(P)ReCaP]: A Market-based Approach
for Climate Finance and Risk Assessment
- URL: http://arxiv.org/abs/2205.00666v1
- Date: Mon, 2 May 2022 06:02:13 GMT
- Title: (Private)-Retroactive Carbon Pricing [(P)ReCaP]: A Market-based Approach
for Climate Finance and Risk Assessment
- Authors: Yoshua Bengio, Prateek Gupta, Dylan Radovic, Maarten Scholl, Andrew
Williams, Christian Schroeder de Witt, Tianyu Zhang, Yang Zhang
- Abstract summary: Retrospective Social Cost of Carbon Updating (ReSCCU) is a novel mechanism that corrects for limitations as empirically measured evidence is collected.
To implement ReSCCU in the context of carbon taxation, we propose Retroactive Carbon Pricing (ReCaP)
To alleviate systematic risks and minimize government involvement, we introduce the Private ReCaP (PReCaP) prediction market.
- Score: 64.83786252406105
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Insufficient Social Cost of Carbon (SCC) estimation methods and short-term
decision-making horizons have hindered the ability of carbon emitters to
properly correct for the negative externalities of climate change, as well as
the capacity of nations to balance economic and climate policy. To overcome
these limitations, we introduce Retrospective Social Cost of Carbon Updating
(ReSCCU), a novel mechanism that corrects for these limitations as empirically
measured evidence is collected. To implement ReSCCU in the context of carbon
taxation, we propose Retroactive Carbon Pricing (ReCaP), a market mechanism in
which polluters offload the payment of ReSCCU adjustments to insurers. To
alleviate systematic risks and minimize government involvement, we introduce
the Private ReCaP (PReCaP) prediction market, which could see real-world
implementation based on the engagement of a few high net-worth individuals or
independent institutions.
Related papers
- Carbon Market Simulation with Adaptive Mechanism Design [55.25103894620696]
A carbon market is a market-based tool that incentivizes economic agents to align individual profits with the global utility.
We propose an adaptive mechanism design framework, simulating the market using hierarchical, model-free multi-agent reinforcement learning (MARL)
Numerical results show MARL enables government agents to balance productivity, equality, and carbon emissions.
arXiv Detail & Related papers (2024-06-12T05:08:51Z) - Generative AI for Low-Carbon Artificial Intelligence of Things with Large Language Models [67.0243099823109]
Generative AI (GAI) holds immense potential to reduce carbon emissions of Artificial Intelligence of Things (AIoT)
In this article, we explore the potential of GAI for carbon emissions reduction and propose a novel GAI-enabled solution for low-carbon AIoT.
We propose a Large Language Model (LLM)-enabled carbon emission optimization framework, in which we design pluggable LLM and Retrieval Augmented Generation (RAG) modules.
arXiv Detail & Related papers (2024-04-28T05:46:28Z) - Global, robust and comparable digital carbon assets [0.28106259549258145]
We propose a new digital carbon asset (the PACT stablecoin) against which carbon offsetting claims can be transparently verified.
We implement and evaluate the PACT carbon stablecoin on the Tezos blockchain, which is designed to facilitate low-cost transactions.
Our work brings scale and trust to the voluntary carbon market by providing a transparent, scalable, and efficient framework for high integrity carbon credit transactions.
arXiv Detail & Related papers (2024-03-21T17:35:07Z) - Improving International Climate Policy via Mutually Conditional Binding
Commitments [0.03499870393443267]
Conditional Commitment Mechanism aims to formalize conditional cooperation in international climate policy.
We provide an overview of the mechanism, its performance in the AI4ClimateCooperation challenge, and discuss potential real-world implementation aspects.
arXiv Detail & Related papers (2023-07-26T15:53:26Z) - AI4GCC-Team -- Below Sea Level: Score and Real World Relevance [3.6223658572137825]
We propose a negotiation protocol for use in the RICE-N climate-economic simulation.
We demonstrate the effectiveness of our approach by comparing simulated outcomes to representative concentration pathways.
We provide an analysis of our protocol's World Trade Organization compliance, administrative and political feasibility, and ethical concerns.
arXiv Detail & Related papers (2023-07-26T01:32:19Z) - Hallucinated Adversarial Control for Conservative Offline Policy
Evaluation [64.94009515033984]
We study the problem of conservative off-policy evaluation (COPE) where given an offline dataset of environment interactions, we seek to obtain a (tight) lower bound on a policy's performance.
We introduce HAMBO, which builds on an uncertainty-aware learned model of the transition dynamics.
We prove that the resulting COPE estimates are valid lower bounds, and, under regularity conditions, show their convergence to the true expected return.
arXiv Detail & Related papers (2023-03-02T08:57:35Z) - IMPACT: Integrated Bottom-Up Greenhouse Gas Emission Pathways for Cities [0.0]
IMPACT pathways integrate technology adoption policies with zoning policies, climate change, and grid decarbonization scenarios.
We identify an emission premium for sprawling and show that adverse policy combinations exist that can exhibit rebounding emissions over time.
arXiv Detail & Related papers (2022-01-31T02:30:39Z) - Modelling the transition to a low-carbon energy supply [91.3755431537592]
A transition to a low-carbon electricity supply is crucial to limit the impacts of climate change.
Reducing carbon emissions could help prevent the world from reaching a tipping point, where runaway emissions are likely.
Runaway emissions could lead to extremes in weather conditions around the world.
arXiv Detail & Related papers (2021-09-25T12:37:05Z) - Optimizing carbon tax for decentralized electricity markets using an
agent-based model [69.3939291118954]
Averting the effects of anthropogenic climate change requires a transition from fossil fuels to low-carbon technology.
Carbon taxes have been shown to be an efficient way to aid in this transition.
We use the NSGA-II genetic algorithm to minimize average electricity price and relative carbon intensity of the electricity mix.
arXiv Detail & Related papers (2020-05-28T06:54:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.