Recent advances in high-dimensional quantum frequency combs
- URL: http://arxiv.org/abs/2502.08879v1
- Date: Thu, 13 Feb 2025 01:33:58 GMT
- Title: Recent advances in high-dimensional quantum frequency combs
- Authors: Kai-Chi Chang, Xiang Cheng, Murat Can Sarihan, Chee Wei Wong,
- Abstract summary: We provide an overview of recent technological advancements in high-dimensional energy-time entangled quantum frequency combs.
We explore how these time-frequency qudits, achieved using scalable telecommunications-wavelength components, can empower the creation of large-scale quantum states.
- Score: 6.105712747182332
- License:
- Abstract: High-dimensional entanglement in qudit states offers a promising pathway towards the realization of practical, large-scale quantum systems that are highly controllable. These systems can be leveraged for various applications, including advanced quantum information processing, secure communications, computation, and metrology. In this context, quantum frequency combs have a crucial role as they inherently support multiple modes in both temporal and frequency domains, while preserving a single spatial mode. The multiple temporal and frequency modes of quantum frequency combs facilitate the generation, characterization, and control of high-dimensional time-frequency entanglement in extensive quantum systems. In this review article, we provide an overview of recent technological advancements in high-dimensional energy-time entangled quantum frequency combs. We explore how these time-frequency qudits, achieved using scalable telecommunications-wavelength components, can empower the creation of large-scale quantum states. Advances in quantum frequency combs can unlock new capabilities and versatility for promising developments in quantum science and technology.
Related papers
- Empowering high-dimensional quantum computing by traversing the dual
bosonic ladder [0.12045539806824922]
We present a robust, hardware-efficient, and experimental approach for operating multidimensional solid-state systems using Raman-assisted two-photon interactions.
Our work illuminates the quantum electrodynamics of strongly driven multi-qudit systems and provides the experimental foundation for the future development of high-dimensional quantum applications.
arXiv Detail & Related papers (2023-12-29T18:49:26Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Quantum Optical Memory for Entanglement Distribution [52.77024349608834]
Entanglement of quantum states over long distances can empower quantum computing, quantum communications, and quantum sensing.
Over the past two decades, quantum optical memories with high fidelity, high efficiencies, long storage times, and promising multiplexing capabilities have been developed.
arXiv Detail & Related papers (2023-04-19T03:18:51Z) - Steering of Quantum Walks through Coherent Control of High-dimensional
Bi-photon Quantum Frequency Combs with Tunable State Entropies [0.0]
We generate high-dimensional quantum photonic states with tunable entropies from periodically poled lithium niobate waveguides.
These states can be an excellent testbed for several quantum computation and communication protocols in nonideal scenarios.
arXiv Detail & Related papers (2022-10-12T15:14:19Z) - High-Dimensional Entanglement for Quantum Communication in the Frequency
Domain [0.0]
High-dimensional photonic entanglement is a promising candidate for error-protected quantum information processing.
This study shows how to harness the large frequency-entanglement inherent in standard continuous-wave spontaneous down-conversion processes.
arXiv Detail & Related papers (2022-06-02T10:08:28Z) - Fast quantum state transfer and entanglement for cavity-coupled many
qubits via dark pathways [1.8352113484137624]
Quantum state transfer (QST) and entangled state generation (ESG) are important building blocks for modern quantum information processing.
We propose a general method to realize high-fidelity fast QST and ESG in a cavity-coupled many qubits system via its dark pathways.
arXiv Detail & Related papers (2022-01-18T08:29:35Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z) - Integrated micro-comb sources for quantum optical applications [0.0]
We review progress on the realization of energy-time entangled optical frequency combs.
We discuss how photonic integration and the use of fiber-optic telecommunications components can enable quantum state control.
arXiv Detail & Related papers (2020-01-08T03:39:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.