CoL3D: Collaborative Learning of Single-view Depth and Camera Intrinsics for Metric 3D Shape Recovery
- URL: http://arxiv.org/abs/2502.08902v1
- Date: Thu, 13 Feb 2025 02:36:01 GMT
- Title: CoL3D: Collaborative Learning of Single-view Depth and Camera Intrinsics for Metric 3D Shape Recovery
- Authors: Chenghao Zhang, Lubin Fan, Shen Cao, Bojian Wu, Jieping Ye,
- Abstract summary: We propose a collaborative learning framework for estimating depth and camera intrinsics, named CoL3D, to learn metric 3D shapes from single images.
Specifically, CoL3D adopts a unified network and performs collaborative optimization at three levels: depth, camera intrinsics, and 3D point clouds.
- Score: 31.398410174061166
- License:
- Abstract: Recovering the metric 3D shape from a single image is particularly relevant for robotics and embodied intelligence applications, where accurate spatial understanding is crucial for navigation and interaction with environments. Usually, the mainstream approaches achieve it through monocular depth estimation. However, without camera intrinsics, the 3D metric shape can not be recovered from depth alone. In this study, we theoretically demonstrate that depth serves as a 3D prior constraint for estimating camera intrinsics and uncover the reciprocal relations between these two elements. Motivated by this, we propose a collaborative learning framework for jointly estimating depth and camera intrinsics, named CoL3D, to learn metric 3D shapes from single images. Specifically, CoL3D adopts a unified network and performs collaborative optimization at three levels: depth, camera intrinsics, and 3D point clouds. For camera intrinsics, we design a canonical incidence field mechanism as a prior that enables the model to learn the residual incident field for enhanced calibration. Additionally, we incorporate a shape similarity measurement loss in the point cloud space, which improves the quality of 3D shapes essential for robotic applications. As a result, when training and testing on a single dataset with in-domain settings, CoL3D delivers outstanding performance in both depth estimation and camera calibration across several indoor and outdoor benchmark datasets, which leads to remarkable 3D shape quality for the perception capabilities of robots.
Related papers
- FLARE: Feed-forward Geometry, Appearance and Camera Estimation from Uncalibrated Sparse Views [93.6881532277553]
We present FLARE, a feed-forward model designed to infer high-quality camera poses and 3D geometry from uncalibrated sparse-view images.
Our solution features a cascaded learning paradigm with camera pose serving as the critical bridge, recognizing its essential role in mapping 3D structures onto 2D image planes.
arXiv Detail & Related papers (2025-02-17T18:54:05Z) - BIP3D: Bridging 2D Images and 3D Perception for Embodied Intelligence [11.91274849875519]
We introduce a novel image-centric 3D perception model, BIP3D, to overcome the limitations of point-centric methods.
We leverage pre-trained 2D vision foundation models to enhance semantic understanding, and introduce a spatial enhancer module to improve spatial understanding.
In our experiments, BIP3D outperforms current state-of-the-art results on the EmbodiedScan benchmark, achieving improvements of 5.69% in the 3D detection task and 15.25% in the 3D visual grounding task.
arXiv Detail & Related papers (2024-11-22T11:35:42Z) - LLMI3D: MLLM-based 3D Perception from a Single 2D Image [77.13869413871028]
multimodal large language models (MLLMs) excel in general capacity but underperform in 3D tasks.
In this paper, we propose solutions for weak 3D local spatial object perception, poor text-based geometric numerical output, and inability to handle camera focal variations.
We employ parameter-efficient fine-tuning for a pre-trained MLLM and develop LLMI3D, a powerful 3D perception MLLM.
arXiv Detail & Related papers (2024-08-14T10:00:16Z) - Unsupervised Learning of Category-Level 3D Pose from Object-Centric Videos [15.532504015622159]
Category-level 3D pose estimation is a fundamentally important problem in computer vision and robotics.
We tackle the problem of learning to estimate the category-level 3D pose only from casually taken object-centric videos.
arXiv Detail & Related papers (2024-07-05T09:43:05Z) - VFMM3D: Releasing the Potential of Image by Vision Foundation Model for Monocular 3D Object Detection [80.62052650370416]
monocular 3D object detection holds significant importance across various applications, including autonomous driving and robotics.
In this paper, we present VFMM3D, an innovative framework that leverages the capabilities of Vision Foundation Models (VFMs) to accurately transform single-view images into LiDAR point cloud representations.
arXiv Detail & Related papers (2024-04-15T03:12:12Z) - AutoDecoding Latent 3D Diffusion Models [95.7279510847827]
We present a novel approach to the generation of static and articulated 3D assets that has a 3D autodecoder at its core.
The 3D autodecoder framework embeds properties learned from the target dataset in the latent space.
We then identify the appropriate intermediate volumetric latent space, and introduce robust normalization and de-normalization operations.
arXiv Detail & Related papers (2023-07-07T17:59:14Z) - Ray3D: ray-based 3D human pose estimation for monocular absolute 3D
localization [3.5379706873065917]
We propose a novel monocular ray-based 3D (Ray3D) absolute human pose estimation with calibrated camera.
Our method significantly outperforms existing state-of-the-art models.
arXiv Detail & Related papers (2022-03-22T05:42:31Z) - Learning Stereopsis from Geometric Synthesis for 6D Object Pose
Estimation [11.999630902627864]
Current monocular-based 6D object pose estimation methods generally achieve less competitive results than RGBD-based methods.
This paper proposes a 3D geometric volume based pose estimation method with a short baseline two-view setting.
Experiments show that our method outperforms state-of-the-art monocular-based methods, and is robust in different objects and scenes.
arXiv Detail & Related papers (2021-09-25T02:55:05Z) - Learning Geometry-Guided Depth via Projective Modeling for Monocular 3D Object Detection [70.71934539556916]
We learn geometry-guided depth estimation with projective modeling to advance monocular 3D object detection.
Specifically, a principled geometry formula with projective modeling of 2D and 3D depth predictions in the monocular 3D object detection network is devised.
Our method remarkably improves the detection performance of the state-of-the-art monocular-based method without extra data by 2.80% on the moderate test setting.
arXiv Detail & Related papers (2021-07-29T12:30:39Z) - Reinforced Axial Refinement Network for Monocular 3D Object Detection [160.34246529816085]
Monocular 3D object detection aims to extract the 3D position and properties of objects from a 2D input image.
Conventional approaches sample 3D bounding boxes from the space and infer the relationship between the target object and each of them, however, the probability of effective samples is relatively small in the 3D space.
We propose to start with an initial prediction and refine it gradually towards the ground truth, with only one 3d parameter changed in each step.
This requires designing a policy which gets a reward after several steps, and thus we adopt reinforcement learning to optimize it.
arXiv Detail & Related papers (2020-08-31T17:10:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.