論文の概要: Exploring Emotion-Sensitive LLM-Based Conversational AI
- arxiv url: http://arxiv.org/abs/2502.08920v1
- Date: Thu, 13 Feb 2025 03:13:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-14 13:44:58.934860
- Title: Exploring Emotion-Sensitive LLM-Based Conversational AI
- Title(参考訳): 感情感性LLMに基づく会話型AIの探索
- Authors: Antonin Brun, Ruying Liu, Aryan Shukla, Frances Watson, Jonathan Gratch,
- Abstract要約: 感情に敏感なLLMベースのチャットボットと感情に敏感なLLMベースのチャットボットを30名を対象に比較した。
感情に敏感なチャットボットでは,信頼感や能力の認知度が高いことが強調された。
本稿では、感情に敏感なチャットボットによるユーザ満足度の向上と、サポートサービスにおける潜在的な応用について論じる。
- 参考スコア(独自算出の注目度): 1.2466379414976048
- License:
- Abstract: Conversational AI chatbots have become increasingly common within the customer service industry. Despite improvements in their emotional development, they often lack the authenticity of real customer service interactions or the competence of service providers. By comparing emotion-sensitive and emotion-insensitive LLM-based chatbots across 30 participants, we aim to explore how emotional sensitivity in chatbots influences perceived competence and overall customer satisfaction in service interactions. Additionally, we employ sentiment analysis techniques to analyze and interpret the emotional content of user inputs. We highlight that perceptions of chatbot trustworthiness and competence were higher in the case of the emotion-sensitive chatbot, even if issue resolution rates were not affected. We discuss implications of improved user satisfaction from emotion-sensitive chatbots and potential applications in support services.
- Abstract(参考訳): 会話型AIチャットボットは、カスタマーサービス業界でますます一般的になっている。
感情的な開発の改善にもかかわらず、実際のカスタマーサービスインタラクションの信頼性やサービスプロバイダの能力に欠けることが多い。
感情に敏感なLLMベースのチャットボットと感情に敏感なLLMベースのチャットボットを30の参加者で比較することにより、チャットボットにおける感情の敏感さが、サービスインタラクションにおける認知能力と全体的な顧客満足度にどのように影響するかを検討することを目的とする。
さらに、ユーザ入力の感情内容を分析し、解釈するために感情分析技術を用いる。
感情に敏感なチャットボットでは,課題解決率が影響を受けなくても,チャットボットの信頼性と能力の認知度が高いことが強調された。
本稿では、感情に敏感なチャットボットによるユーザ満足度の向上と、サポートサービスにおける潜在的な応用について論じる。
関連論文リスト
- Empathetic Response in Audio-Visual Conversations Using Emotion Preference Optimization and MambaCompressor [44.499778745131046]
まず、チャットボットのトレーニングに感情的選好最適化(EPO)を用いる。
このトレーニングは、モデルが正しい反応と反感情反応の微妙な区別を識別することを可能にする。
次に,MambaCompressorを導入し,会話履歴を効果的に圧縮し,管理する。
複数のデータセットにまたがる包括的実験により、我々のモデルは共感的応答の生成や長い対話の管理において、既存のモデルよりも大幅に優れていることが示された。
論文 参考訳(メタデータ) (2024-12-23T13:44:51Z) - Tracking Emotional Dynamics in Chat Conversations: A Hybrid Approach using DistilBERT and Emoji Sentiment Analysis [0.0]
本稿では,テキストの感情検出と絵文字の感情分析を組み合わせることによって,チャット会話における感情動態を追跡するハイブリッドアプローチについて検討する。
Twitterデータセットは、SVM、Random Forest、AdaBoostなど、さまざまな機械学習アルゴリズムを使用して分析された。
以上の結果から,テキストと絵文字分析の統合は,顧客サービス,ワークチャット,ソーシャルメディアのインタラクションに応用可能なチャット感情の追跡に有効な方法であることが示唆された。
論文 参考訳(メタデータ) (2024-08-03T18:28:31Z) - "We care": Improving Code Mixed Speech Emotion Recognition in
Customer-Care Conversations [36.9886023078247]
音声感情認識(SER)は、発話中の感情を識別するタスクである。
本稿では,単語レベルのVAD値を組み込むことで,負の感情に対して,SERのタスクを2%改善することを示す。
我々の研究は、このような状況下でより丁寧で共感的な会話エージェントを開発するために利用することができる。
論文 参考訳(メタデータ) (2023-08-06T15:56:12Z) - Large Language Models Understand and Can be Enhanced by Emotional
Stimuli [53.53886609012119]
我々は、感情的な刺激を理解するために、大規模言語モデルの能力を探究する第一歩を踏み出す。
実験の結果,LLMは感情的知能を把握でき,その性能は感情的刺激によって改善できることがわかった。
EmotionPromptが生成タスクの性能を大幅に向上させることを示す。
論文 参考訳(メタデータ) (2023-07-14T00:57:12Z) - A Deep Learning Approach to Integrate Human-Level Understanding in a
Chatbot [0.4632366780742501]
人間とは異なり、チャットボットは一度に複数の顧客にサービスを提供し、24/7で提供され、1秒以内で返信できる。
深層学習を用いて感情分析,感情検出,意図分類,名義認識を行い,人文的理解と知性を備えたチャットボットを開発した。
論文 参考訳(メタデータ) (2021-12-31T22:26:41Z) - CheerBots: Chatbots toward Empathy and Emotionusing Reinforcement
Learning [60.348822346249854]
本研究では,複数の共感型チャットボットがユーザの暗黙の感情を理解し,複数の対話のターンに対して共感的に応答する枠組みを提案する。
チャットボットをCheerBotsと呼びます。CheerBotsは検索ベースまたは生成ベースで、深い強化学習によって微調整されます。
共感的態度で反応するため,CheerBotsの学習支援としてシミュレーションエージェントである概念人間モデルを開発し,今後のユーザの感情状態の変化を考慮し,共感を喚起する。
論文 参考訳(メタデータ) (2021-10-08T07:44:47Z) - Emotion-aware Chat Machine: Automatic Emotional Response Generation for
Human-like Emotional Interaction [55.47134146639492]
この記事では、投稿中のセマンティクスと感情を同時にエンコードできる、未定義のエンドツーエンドニューラルネットワークを提案する。
実世界のデータを用いた実験により,提案手法は,コンテンツコヒーレンスと感情の適切性の両方の観点から,最先端の手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2021-06-06T06:26:15Z) - Towards an Online Empathetic Chatbot with Emotion Causes [10.700455393948818]
共感反応に対するユーザの感情を誘発する原因を学習することが重要である。
オンライン環境で感情の原因を収集するために、カウンセリング戦略を活用する。
提案手法の有効性を,複数のSOTA法との比較により検証した。
論文 参考訳(メタデータ) (2021-05-11T02:52:46Z) - Disambiguating Affective Stimulus Associations for Robot Perception and
Dialogue [67.89143112645556]
知覚された聴覚刺激と感情表現の関連性を学ぶことができるNICOロボットを提供します。
NICOは、感情駆動対話システムの助けを借りて、個人と特定の刺激の両方でこれを行うことができる。
ロボットは、実際のHRIシナリオにおいて、被験者の聴覚刺激の楽しさを判断するために、この情報を利用することができる。
論文 参考訳(メタデータ) (2021-03-05T20:55:48Z) - Knowledge Bridging for Empathetic Dialogue Generation [52.39868458154947]
外部知識の不足により、感情的な対話システムは暗黙の感情を知覚し、限られた対話履歴から感情的な対話を学ぶことが困難になる。
本研究では,情緒的対話生成における感情を明確に理解し,表現するために,常識的知識や情緒的語彙的知識などの外部知識を活用することを提案する。
論文 参考訳(メタデータ) (2020-09-21T09:21:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。