Topo2Seq: Enhanced Topology Reasoning via Topology Sequence Learning
- URL: http://arxiv.org/abs/2502.08974v1
- Date: Thu, 13 Feb 2025 05:21:02 GMT
- Title: Topo2Seq: Enhanced Topology Reasoning via Topology Sequence Learning
- Authors: Yiming Yang, Yueru Luo, Bingkun He, Erlong Li, Zhipeng Cao, Chao Zheng, Shuqi Mei, Zhen Li,
- Abstract summary: We introduce Topo2Seq, a novel approach for enhancing topology reasoning via topology sequences learning.
The core concept of Topo2Seq is a randomized order prompt-to-sequence learning between lane segment decoder and topology sequence decoder.
We show that Topo2Seq learns powerful long-range perception and accurate topological reasoning from the topology sequence decoder.
- Score: 26.59766596428789
- License:
- Abstract: Extracting lane topology from perspective views (PV) is crucial for planning and control in autonomous driving. This approach extracts potential drivable trajectories for self-driving vehicles without relying on high-definition (HD) maps. However, the unordered nature and weak long-range perception of the DETR-like framework can result in misaligned segment endpoints and limited topological prediction capabilities. Inspired by the learning of contextual relationships in language models, the connectivity relations in roads can be characterized as explicit topology sequences. In this paper, we introduce Topo2Seq, a novel approach for enhancing topology reasoning via topology sequences learning. The core concept of Topo2Seq is a randomized order prompt-to-sequence learning between lane segment decoder and topology sequence decoder. The dual-decoder branches simultaneously learn the lane topology sequences extracted from the Directed Acyclic Graph (DAG) and the lane graph containing geometric information. Randomized order prompt-to-sequence learning extracts unordered key points from the lane graph predicted by the lane segment decoder, which are then fed into the prompt design of the topology sequence decoder to reconstruct an ordered and complete lane graph. In this way, the lane segment decoder learns powerful long-range perception and accurate topological reasoning from the topology sequence decoder. Notably, topology sequence decoder is only introduced during training and does not affect the inference efficiency. Experimental evaluations on the OpenLane-V2 dataset demonstrate the state-of-the-art performance of Topo2Seq in topology reasoning.
Related papers
- T2SG: Traffic Topology Scene Graph for Topology Reasoning in Autonomous Driving [26.038699227233227]
Traffic Topology Scene Graph is a unified scene graph explicitly modeling the lane, controlled and guided by different road signals.
For the generation of T2SG, we propose TopoFormer, a novel one-stage Topology Scene Graph TransFormer with two newly designed layers.
arXiv Detail & Related papers (2024-11-28T03:55:50Z) - TopoSD: Topology-Enhanced Lane Segment Perception with SDMap Prior [70.84644266024571]
We propose to train a perception model to "see" standard definition maps (SDMaps)
We encode SDMap elements into neural spatial map representations and instance tokens, and then incorporate such complementary features as prior information.
Based on the lane segment representation framework, the model simultaneously predicts lanes, centrelines and their topology.
arXiv Detail & Related papers (2024-11-22T06:13:42Z) - TopoLogic: An Interpretable Pipeline for Lane Topology Reasoning on Driving Scenes [27.930213859199473]
We propose an interpretable method for lane topology reasoning based on lane geometric distance and lane query similarity.
Our approach significantly outperforms the existing state-of-the-art methods on the mainstream benchmark OpenLane-V2.
Our proposed geometric distance topology reasoning method can be incorporated into well-trained models without re-training.
arXiv Detail & Related papers (2024-05-23T16:15:17Z) - LaneGraph2Seq: Lane Topology Extraction with Language Model via
Vertex-Edge Encoding and Connectivity Enhancement [34.017743757153866]
Intricate road structures are often depicted using lane graphs, which include centerline curves and connections forming a Directed Acyclic Graph (DAG)
We introduce LaneGraph2Seq, a novel approach for lane graph extraction.
Our method demonstrates superior performance compared to state-of-the-art techniques in lane graph extraction.
arXiv Detail & Related papers (2024-01-31T05:44:01Z) - TopoMLP: A Simple yet Strong Pipeline for Driving Topology Reasoning [51.29906807247014]
Topology reasoning aims to understand road scenes and present drivable routes in autonomous driving.
It requires detecting road centerlines (lane) and traffic elements, further reasoning their topology relationship, i.e., lane-lane topology, and lane-traffic topology.
We introduce a powerful 3D lane detector and an improved 2D traffic element detector to extend the upper limit of topology performance.
arXiv Detail & Related papers (2023-10-10T16:24:51Z) - Graph-based Topology Reasoning for Driving Scenes [102.35885039110057]
We present TopoNet, the first end-to-end framework capable of abstracting traffic knowledge beyond conventional perception tasks.
We evaluate TopoNet on the challenging scene understanding benchmark, OpenLane-V2.
arXiv Detail & Related papers (2023-04-11T15:23:29Z) - Reinforcement Learning Based Query Vertex Ordering Model for Subgraph
Matching [58.39970828272366]
Subgraph matching algorithms enumerate all is embeddings of a query graph in a data graph G.
matching order plays a critical role in time efficiency of these backtracking based subgraph matching algorithms.
In this paper, for the first time we apply the Reinforcement Learning (RL) and Graph Neural Networks (GNNs) techniques to generate the high-quality matching order for subgraph matching algorithms.
arXiv Detail & Related papers (2022-01-25T00:10:03Z) - DAGMapper: Learning to Map by Discovering Lane Topology [84.12949740822117]
We focus on drawing the lane boundaries of complex highways with many lanes that contain topology changes due to forks and merges.
We formulate the problem as inference in a directed acyclic graphical model (DAG), where the nodes of the graph encode geometric and topological properties of the local regions of the lane boundaries.
We show the effectiveness of our approach on two major North American Highways in two different states and show high precision and recall as well as 89% correct topology.
arXiv Detail & Related papers (2020-12-22T21:58:57Z) - Spatio-Temporal Inception Graph Convolutional Networks for
Skeleton-Based Action Recognition [126.51241919472356]
We design a simple and highly modularized graph convolutional network architecture for skeleton-based action recognition.
Our network is constructed by repeating a building block that aggregates multi-granularity information from both the spatial and temporal paths.
arXiv Detail & Related papers (2020-11-26T14:43:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.