T2SG: Traffic Topology Scene Graph for Topology Reasoning in Autonomous Driving
- URL: http://arxiv.org/abs/2411.18894v1
- Date: Thu, 28 Nov 2024 03:55:50 GMT
- Title: T2SG: Traffic Topology Scene Graph for Topology Reasoning in Autonomous Driving
- Authors: Changsheng Lv, Mengshi Qi, Liang Liu, Huadong Ma,
- Abstract summary: Traffic Topology Scene Graph is a unified scene graph explicitly modeling the lane, controlled and guided by different road signals.
For the generation of T2SG, we propose TopoFormer, a novel one-stage Topology Scene Graph TransFormer with two newly designed layers.
- Score: 26.038699227233227
- License:
- Abstract: Understanding the traffic scenes and then generating high-definition (HD) maps present significant challenges in autonomous driving. In this paper, we defined a novel Traffic Topology Scene Graph, a unified scene graph explicitly modeling the lane, controlled and guided by different road signals (e.g., right turn), and topology relationships among them, which is always ignored by previous high-definition (HD) mapping methods. For the generation of T2SG, we propose TopoFormer, a novel one-stage Topology Scene Graph TransFormer with two newly designed layers. Specifically, TopoFormer incorporates a Lane Aggregation Layer (LAL) that leverages the geometric distance among the centerline of lanes to guide the aggregation of global information. Furthermore, we proposed a Counterfactual Intervention Layer (CIL) to model the reasonable road structure ( e.g., intersection, straight) among lanes under counterfactual intervention. Then the generated T2SG can provide a more accurate and explainable description of the topological structure in traffic scenes. Experimental results demonstrate that TopoFormer outperforms existing methods on the T2SG generation task, and the generated T2SG significantly enhances traffic topology reasoning in downstream tasks, achieving a state-of-the-art performance of 46.3 OLS on the OpenLane-V2 benchmark. We will release our source code and model.
Related papers
- Topo2Seq: Enhanced Topology Reasoning via Topology Sequence Learning [26.59766596428789]
We introduce Topo2Seq, a novel approach for enhancing topology reasoning via topology sequences learning.
The core concept of Topo2Seq is a randomized order prompt-to-sequence learning between lane segment decoder and topology sequence decoder.
We show that Topo2Seq learns powerful long-range perception and accurate topological reasoning from the topology sequence decoder.
arXiv Detail & Related papers (2025-02-13T05:21:02Z) - Graph-based Topology Reasoning for Driving Scenes [102.35885039110057]
We present TopoNet, the first end-to-end framework capable of abstracting traffic knowledge beyond conventional perception tasks.
We evaluate TopoNet on the challenging scene understanding benchmark, OpenLane-V2.
arXiv Detail & Related papers (2023-04-11T15:23:29Z) - D2-TPred: Discontinuous Dependency for Trajectory Prediction under
Traffic Lights [68.76631399516823]
We present a trajectory prediction approach with respect to traffic lights, D2-TPred, using a spatial dynamic interaction graph (SDG) and a behavior dependency graph (BDG)
Our experimental results show that our model achieves more than 20.45% and 20.78% in terms of ADE and FDE, respectively, on VTP-TL.
arXiv Detail & Related papers (2022-07-21T10:19:07Z) - HDGT: Heterogeneous Driving Graph Transformer for Multi-Agent Trajectory
Prediction via Scene Encoding [76.9165845362574]
We propose a backbone modelling the driving scene as a heterogeneous graph with different types of nodes and edges.
For spatial relation encoding, the coordinates of the node as well as its in-edges are in the local node-centric coordinate system.
Experimental results show that HDGT achieves state-of-the-art performance for the task of trajectory prediction.
arXiv Detail & Related papers (2022-04-30T07:08:30Z) - Trajectory Prediction with Graph-based Dual-scale Context Fusion [43.51107329748957]
We present a graph-based trajectory prediction network named the Dual Scale Predictor.
It encodes both the static and dynamical driving context in a hierarchical manner.
Thanks to the proposed dual-scale context fusion network, our DSP is able to generate accurate and human-like multi-modal trajectories.
arXiv Detail & Related papers (2021-11-02T13:42:16Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
Accurate inference of fine-grained traffic flow from coarse-grained one is an emerging yet crucial problem.
We propose a novel Road-Aware Traffic Flow Magnifier (RATFM) that exploits the prior knowledge of road networks.
Our method can generate high-quality fine-grained traffic flow maps.
arXiv Detail & Related papers (2021-09-29T07:51:49Z) - Bayesian Graph Convolutional Network for Traffic Prediction [23.30484840210517]
We propose a Bayesian Graph Convolutional Network (BGCN) framework to alleviate these issues.
Under this framework, the graph structure is viewed as a random realization from a parametric generative model.
We verify the effectiveness of our method on five real-world datasets, and the experimental results demonstrate that BGCN attains superior performance compared with state-of-the-art methods.
arXiv Detail & Related papers (2021-04-01T14:19:37Z) - DAGMapper: Learning to Map by Discovering Lane Topology [84.12949740822117]
We focus on drawing the lane boundaries of complex highways with many lanes that contain topology changes due to forks and merges.
We formulate the problem as inference in a directed acyclic graphical model (DAG), where the nodes of the graph encode geometric and topological properties of the local regions of the lane boundaries.
We show the effectiveness of our approach on two major North American Highways in two different states and show high precision and recall as well as 89% correct topology.
arXiv Detail & Related papers (2020-12-22T21:58:57Z) - Constructing Geographic and Long-term Temporal Graph for Traffic
Forecasting [88.5550074808201]
We propose Geographic and Long term Temporal Graph Convolutional Recurrent Neural Network (GLT-GCRNN) for traffic forecasting.
In this work, we propose a novel framework for traffic forecasting that learns the rich interactions between roads sharing similar geographic or longterm temporal patterns.
arXiv Detail & Related papers (2020-04-23T03:50:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.