Cost-Saving LLM Cascades with Early Abstention
- URL: http://arxiv.org/abs/2502.09054v1
- Date: Thu, 13 Feb 2025 08:08:39 GMT
- Title: Cost-Saving LLM Cascades with Early Abstention
- Authors: Michael J. Zellinger, Rex Liu, Matt Thomson,
- Abstract summary: We investigate the benefits of "early abstention" in LLM cascades.
We find that it reduces the overall test loss by 2.2% on average across six benchmarks.
- Score: 1.3108652488669732
- License:
- Abstract: LLM cascades are based on the idea that processing all queries with the largest and most expensive LLMs is inefficient. Instead, cascades deploy small LLMs to answer the majority of queries, limiting the use of large and expensive LLMs to only the most difficult queries. This approach can significantly reduce costs without impacting performance. However, risk-sensitive domains such as finance or medicine place an additional premium on avoiding model errors. Recognizing that even the most expensive models may make mistakes, applications in these domains benefit from allowing LLM systems to completely abstain from answering a query when the chance of making a mistake is significant. However, giving a cascade the ability to abstain poses an immediate design question for LLM cascades: should abstention only be allowed at the final model or also at earlier models? Since the error patterns of small and large models are correlated, the latter strategy may further reduce inference costs by letting inexpensive models anticipate abstention decisions by expensive models, thereby obviating the need to run the expensive models. We investigate the benefits of "early abstention" in LLM cascades and find that it reduces the overall test loss by 2.2% on average across six benchmarks (GSM8K, MedMCQA, MMLU, TriviaQA, TruthfulQA, and XSum). These gains result from a more effective use of abstention, which trades a 4.1% average increase in the overall abstention rate for a 13.0% reduction in cost and a 5.0% reduction in error rate. Our findings demonstrate that it is possible to leverage correlations between the error patterns of different language models to drive performance improvements for LLM systems with abstention.
Related papers
- LLM-Lasso: A Robust Framework for Domain-Informed Feature Selection and Regularization [59.75242204923353]
We introduce LLM-Lasso, a framework that leverages large language models (LLMs) to guide feature selection in Lasso regression.
LLMs generate penalty factors for each feature, which are converted into weights for the Lasso penalty using a simple, tunable model.
Features identified as more relevant by the LLM receive lower penalties, increasing their likelihood of being retained in the final model.
arXiv Detail & Related papers (2025-02-15T02:55:22Z) - Preference Leakage: A Contamination Problem in LLM-as-a-judge [69.96778498636071]
Large Language Models (LLMs) as judges and LLM-based data synthesis have emerged as two fundamental LLM-driven data annotation methods.
In this work, we expose preference leakage, a contamination problem in LLM-as-a-judge caused by the relatedness between the synthetic data generators and LLM-based evaluators.
arXiv Detail & Related papers (2025-02-03T17:13:03Z) - Adaptive Pruning for Large Language Models with Structural Importance Awareness [66.2690963378878]
Large language models (LLMs) have significantly improved language understanding and generation capabilities.
LLMs are difficult to deploy on resource-constrained edge devices due to their high computational and storage resource demands.
We propose structurally-aware adaptive pruning (SAAP) to significantly reduce the computational and memory costs while maintaining model performance.
arXiv Detail & Related papers (2024-12-19T18:08:04Z) - Efficient Hybrid Inference for LLMs: Reward-Based Token Modelling with Selective Cloud Assistance [0.0]
Large language models (LLMs) are known for their exceptional performance across a range of natural language processing tasks.
Smaller language models (SLMs), which can be deployed on lower-cost edge devices, struggle to match the performance of their larger counterparts.
This paper presents a novel hybrid inference approach that leverages the strengths of both model types.
arXiv Detail & Related papers (2024-09-15T15:12:45Z) - Delta-CoMe: Training-Free Delta-Compression with Mixed-Precision for Large Language Models [79.46938238953916]
Fine-tuning large language models (LLMs) to diverse applications is crucial to meet complex demands.
Recent studies suggest decomposing a fine-tuned LLM into a base model and corresponding delta weights, which are then compressed using low-rank or low-bit approaches to reduce costs.
In this work, we observe that existing low-rank and low-bit compression methods can significantly harm the model performance for task-specific fine-tuned LLMs.
arXiv Detail & Related papers (2024-06-13T07:57:27Z) - OptLLM: Optimal Assignment of Queries to Large Language Models [12.07164196530872]
We propose a framework for addressing the cost-effective query allocation problem for large language models (LLMs)
Our framework, named OptLLM, provides users with a range of optimal solutions to choose from, aligning with their budget constraints and performance preferences.
To evaluate the effectiveness of OptLLM, we conduct extensive experiments on various types of tasks, including text classification, question answering, sentiment analysis, reasoning, and log parsing.
arXiv Detail & Related papers (2024-05-24T01:05:37Z) - Optimising Calls to Large Language Models with Uncertainty-Based Two-Tier Selection [80.63946798650653]
Decision centers on whether to use a large LLM with better performance or a smaller one with reduced costs.
We propose a simpler solution; we use only the uncertainty of the generations of the small LLM as the decision criterion.
Our experiments reveal this simple solution optimally balances cost and performance, outperforming existing methods on 25 out of 27 experimental setups.
arXiv Detail & Related papers (2024-05-03T14:38:59Z) - SMART: Automatically Scaling Down Language Models with Accuracy Guarantees for Reduced Processing Fees [21.801053526411415]
Large Language Models (LLMs) have significantly boosted performance in natural language processing (NLP) tasks.
The deployment of high-performance LLMs incurs substantial costs, primarily due to the increased number of parameters aimed at enhancing model performance.
We introduce SMART, a novel framework designed to minimize the inference costs of NLP tasks while ensuring sufficient result quality.
arXiv Detail & Related papers (2024-03-11T17:45:47Z) - Dynamic Sparse No Training: Training-Free Fine-tuning for Sparse LLMs [67.38165028487242]
We introduce Dynamic Sparse No Training (DSnoT), a training-free fine-tuning approach to fine-tune large language models (LLMs)
Inspired by the Dynamic Sparse Training, DSnoT minimizes the reconstruction error between the dense and sparse LLMs.
Our paper offers fresh insights into how to fine-tune sparse LLMs in an efficient training-free manner and open new venues to scale the great potential of sparsity to LLMs.
arXiv Detail & Related papers (2023-10-13T07:38:52Z) - Large Language Model Cascades with Mixture of Thoughts Representations
for Cost-efficient Reasoning [19.472937476936636]
Large language models (LLMs) have exhibited remarkable performance in a variety of tasks, but this strong performance often comes with the high expense of using paid API services.
In this paper, we are motivated to study building an LLM cascade to save the cost of using LLMs.
Our proposed cascades can achieve performance comparable to using solely the stronger LLM but require only 40% of its cost.
arXiv Detail & Related papers (2023-10-04T18:21:17Z) - FrugalGPT: How to Use Large Language Models While Reducing Cost and
Improving Performance [36.94826820536239]
We review the cost associated with querying popular large language models (LLMs)
We discuss three types of strategies that users can exploit to reduce the inference cost associated with using LLMs.
Experiments show that FrugalGPT can match the performance of the best individual LLM with up to 98% cost reduction or improve the accuracy over GPT-4 by 4% with the same cost.
arXiv Detail & Related papers (2023-05-09T05:11:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.