論文の概要: Quantifying Cryptocurrency Unpredictability: A Comprehensive Study of Complexity and Forecasting
- arxiv url: http://arxiv.org/abs/2502.09079v1
- Date: Thu, 13 Feb 2025 08:53:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-14 13:47:14.011590
- Title: Quantifying Cryptocurrency Unpredictability: A Comprehensive Study of Complexity and Forecasting
- Title(参考訳): 暗号の不予測可能性の定量化:複雑さと予測の包括的考察
- Authors: Francesco Puoti, Fabrizio Pittorino, Manuel Roveri,
- Abstract要約: 我々は、Litecoin、Coin、Bitcoin、USDの為替レートに着目した暗号通貨の時系列予測タスクについて検討する。
その結果、暗号通貨の時系列はブラウンノイズによく似た特徴を示すことが明らかとなった。
時系列予測への幅広い統計、機械学習、ディープラーニングモデルの応用は、暗号通貨の予測可能性の低さを示している。
- 参考スコア(独自算出の注目度): 3.724847012963521
- License:
- Abstract: This paper offers a thorough examination of the univariate predictability in cryptocurrency time-series. By exploiting a combination of complexity measure and model predictions we explore the cryptocurrencies time-series forecasting task focusing on the exchange rate in USD of Litecoin, Binance Coin, Bitcoin, Ethereum, and XRP. On one hand, to assess the complexity and the randomness of these time-series, a comparative analysis has been performed using Brownian and colored noises as a benchmark. The results obtained from the Complexity-Entropy causality plane and power density spectrum analysis reveal that cryptocurrency time-series exhibit characteristics closely resembling those of Brownian noise when analyzed in a univariate context. On the other hand, the application of a wide range of statistical, machine and deep learning models for time-series forecasting demonstrates the low predictability of cryptocurrencies. Notably, our analysis reveals that simpler models such as Naive models consistently outperform the more complex machine and deep learning ones in terms of forecasting accuracy across different forecast horizons and time windows. The combined study of complexity and forecasting accuracies highlights the difficulty of predicting the cryptocurrency market. These findings provide valuable insights into the inherent characteristics of the cryptocurrency data and highlight the need to reassess the challenges associated with predicting cryptocurrency's price movements.
- Abstract(参考訳): 本稿では,暗号通貨の時系列における一変量予測可能性について詳細に検討する。
複雑性測定とモデル予測の組み合わせを利用して、Litecoin, Binance Coin, Bitcoin, Ethereum, XRPのUSDにおける為替レートに着目した、暗号通貨の時系列予測タスクを調査します。
一方、これらの時系列の複雑さと乱数性を評価するために、ブラウンノイズとカラーノイズをベンチマークとして比較分析を行った。
複素エントロピー因果平面と電力密度スペクトル解析から得られた結果は、ユニバリケートな文脈で解析すると、暗号通貨の時系列がブラウンノイズとよく似た特性を示すことを示している。
一方,時系列予測における統計的,機械学習,ディープラーニングモデルの適用は,暗号通貨の予測可能性の低さを実証している。
特に、我々の分析では、Naiveモデルのような単純なモデルが、異なる予測地平線と時間窓をまたいで精度を予測するという点で、より複雑なマシンやディープラーニングモデルよりも一貫して優れています。
複雑さと予測精度の複合研究は、暗号通貨市場を予測することの難しさを浮き彫りにしている。
これらの発見は、暗号通貨データ固有の特性に関する貴重な洞察を与え、暗号通貨の価格変動を予測することに関連する課題を再評価する必要性を強調している。
関連論文リスト
- Multi-Source Hard and Soft Information Fusion Approach for Accurate Cryptocurrency Price Movement Prediction [5.885853464728419]
本稿では,暗号通貨価格変動予測の精度を高めるために,HSIF(ハード・アンド・ソフト・インフォメーション・フュージョン)と呼ばれる新しい手法を導入する。
我々のモデルは価格変動を予測するのに約96.8%の精度がある。
情報の導入により,社会的感情が価格変動に与える影響を把握することができる。
論文 参考訳(メタデータ) (2024-09-27T16:32:57Z) - Review of deep learning models for crypto price prediction: implementation and evaluation [5.240745112593501]
本稿では、暗号通貨価格予測のためのディープラーニングに関する文献をレビューし、暗号通貨価格予測のための新しいディープラーニングモデルを評価する。
我々のディープラーニングモデルには、長い短期記憶(LSTM)リカレントニューラルネットワークの変種、畳み込みニューラルネットワーク(CNN)の変種、トランスフォーマーモデルが含まれています。
また、新型コロナウイルスのパンデミックを通じて価格の大幅な変動を示す4つの暗号通貨のボラティリティ分析を実施している。
論文 参考訳(メタデータ) (2024-05-19T03:15:27Z) - Enhancing Price Prediction in Cryptocurrency Using Transformer Neural
Network and Technical Indicators [0.5439020425819]
方法論は、技術指標、Performerニューラルネットワーク、BiLSTMの使用を統合する。
提案手法は、主要な暗号通貨の時間と日時に適用される。
論文 参考訳(メタデータ) (2024-03-06T10:53:12Z) - Financial Time-Series Forecasting: Towards Synergizing Performance And
Interpretability Within a Hybrid Machine Learning Approach [2.0213537170294793]
本稿では、ハイブリッド機械学習アルゴリズムの比較研究を行い、モデル解釈可能性の向上に活用する。
本稿では,金融時系列予測において出現する潜伏関係や複雑なパターンの発掘を目的とした,分解,自己相関関数,指数的三重予測など,時系列統計の事前処理技術に関する体系的な概要を述べる。
論文 参考訳(メタデータ) (2023-12-31T16:38:32Z) - Hawkes-based cryptocurrency forecasting via Limit Order Book data [1.6236898718152877]
本稿では,ホークスモデルに根ざしたリミットオーダーブック(LOB)データを用いた新しい予測アルゴリズムを提案する。
我々の手法は、将来の金融相互作用の予測を活用することで、返却サインの正確な予測を提供する。
提案手法の有効性は,50シナリオにわたるモンテカルロシミュレーションを用いて検証した。
論文 参考訳(メタデータ) (2023-12-21T16:31:07Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
長期的地平線上での多段階の株価予測は、ボラティリティの予測に不可欠である。
多段階の株価予測に対する現在の解決策は、主に単一段階の分類に基づく予測のために設計されている。
深層階層型変分オートコーダ(VAE)と拡散確率的手法を組み合わせてセック2seqの株価予測を行う。
本モデルでは, 予測精度と分散性の観点から, 最先端の解よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-18T16:21:15Z) - Predicting the State of Synchronization of Financial Time Series using
Cross Recurrence Plots [75.20174445166997]
本研究では,2つの金融時系列の動的同期の将来の状態を予測する新しい手法を提案する。
我々は,同期状態の予測を方法論的に扱うためのディープラーニングフレームワークを採用する。
2つの時系列の同期状態を予測するタスクは、一般的には難しいが、ある種の在庫は、非常に良好な性能で達成できる。
論文 参考訳(メタデータ) (2022-10-26T10:22:28Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
伝統的な時系列計量法は、価格力学を駆動する多層相互作用の真の複雑さを捉えることができないことが多い。
最先端の2次最適化アルゴリズムを採用することで、時間的注意を払ってベイジアン双線形ニューラルネットワークを訓練する。
予測分布を用いて推定パラメータとモデル予測に関連する誤差や不確実性を解析することにより、ベイズモデルと従来のML代替品を徹底的に比較する。
論文 参考訳(メタデータ) (2022-03-07T18:59:54Z) - Low-Rank Temporal Attention-Augmented Bilinear Network for financial
time-series forecasting [93.73198973454944]
ディープラーニングモデルは、金融時系列データの予測問題など、さまざまな領域から来る多くの問題において、大幅なパフォーマンス改善をもたらしている。
近年,制限順序書の時系列予測の効率的かつ高性能なモデルとして,時間的注意強化バイリニアネットワークが提案されている。
本稿では,モデルの低ランクテンソル近似を提案し,トレーニング可能なパラメータの数をさらに削減し,その速度を向上する。
論文 参考訳(メタデータ) (2021-07-05T10:15:23Z) - Synergetic Learning of Heterogeneous Temporal Sequences for
Multi-Horizon Probabilistic Forecasting [48.8617204809538]
本稿では,新しい条件生成モデルである変分相乗型マルチホライゾンネットワーク(VSMHN)を提案する。
不均一なシーケンス間で複雑な相関関係を学習するために、深部プロセスモデルと変動的リカレントニューラルネットワークの進歩を組み合わせるために、調整されたエンコーダが考案された。
我々のモデルは変動予測を用いて効果的に訓練でき、モンテカルロシミュレーションを用いて予測を生成することができる。
論文 参考訳(メタデータ) (2021-01-31T11:00:55Z) - Understanding Neural Abstractive Summarization Models via Uncertainty [54.37665950633147]
seq2seq抽象要約モデルは、自由形式の方法でテキストを生成する。
モデルのトークンレベルの予測のエントロピー、すなわち不確実性について検討する。
要約とテキスト生成モデルをより広範囲に解析する上で,不確実性は有用であることを示す。
論文 参考訳(メタデータ) (2020-10-15T16:57:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。