論文の概要: Understanding High-Dimensional Bayesian Optimization
- arxiv url: http://arxiv.org/abs/2502.09198v1
- Date: Thu, 13 Feb 2025 11:37:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-14 13:47:39.280701
- Title: Understanding High-Dimensional Bayesian Optimization
- Title(参考訳): 高次元ベイズ最適化の理解
- Authors: Leonard Papenmeier, Matthias Poloczek, Luigi Nardi,
- Abstract要約: 最近の研究は、高次元実世界のタスクに対して単純なベイズ最適化法がうまく機能していることを報告している。
ハイ次元ベイズ最適化において生じる基本的な課題を特定し、最近の手法が成功した理由を説明する。
そこで本研究では,これらの知見を有効活用して最先端性能を実現するため,MSRと呼ばれる簡易な最大推定法を提案する。
- 参考スコア(独自算出の注目度): 8.07879230384311
- License:
- Abstract: Recent work reported that simple Bayesian optimization methods perform well for high-dimensional real-world tasks, seemingly contradicting prior work and tribal knowledge. This paper investigates the 'why'. We identify fundamental challenges that arise in high-dimensional Bayesian optimization and explain why recent methods succeed. Our analysis shows that vanishing gradients caused by Gaussian process initialization schemes play a major role in the failures of high-dimensional Bayesian optimization and that methods that promote local search behaviors are better suited for the task. We find that maximum likelihood estimation of Gaussian process length scales suffices for state-of-the-art performance. Based on this, we propose a simple variant of maximum likelihood estimation called MSR that leverages these findings to achieve state-of-the-art performance on a comprehensive set of real-world applications. We also present targeted experiments to illustrate and confirm our findings.
- Abstract(参考訳): 最近の研究は、単純なベイズ最適化法が高次元実世界のタスクに対してうまく機能し、以前の作業や部族の知識と矛盾しているように見えることを報告している。
本稿は「なぜ」を考察する。
ハイ次元ベイズ最適化において生じる基本的な課題を特定し、最近の手法が成功した理由を説明する。
解析の結果,ガウス過程の初期化スキームによる勾配の消失は,高次元ベイズ最適化の失敗に大きく寄与し,局所的な探索行動を促進する手法が課題に適していることが示唆された。
ガウス過程長の最大推定精度は,最先端性能に十分であることがわかった。
そこで本研究では,MSRと呼ばれる,これらの知見を生かし,実世界の総合的なアプリケーション上での最先端性能を実現するための,簡易な最大推定法を提案する。
また,本研究の成果を実証し,確認するためのターゲット実験も提示した。
関連論文リスト
- Discovering Preference Optimization Algorithms with and for Large Language Models [50.843710797024805]
オフライン優先最適化は、LLM(Large Language Model)出力の品質を向上・制御するための重要な手法である。
我々は、人間の介入なしに、新しい最先端の選好最適化アルゴリズムを自動で発見する客観的発見を行う。
実験は、ロジスティックと指数的損失を適応的にブレンドする新しいアルゴリズムであるDiscoPOPの最先端性能を示す。
論文 参考訳(メタデータ) (2024-06-12T16:58:41Z) - Vanilla Bayesian Optimization Performs Great in High Dimensions [5.7574684256411786]
高次元問題はベイズ最適化アルゴリズムのアキレスのヒールと見なされてきた。
既存のアルゴリズムが、モデルの複雑さを下げるレンズを通して、これらの退化にどのように対処しているかを示す。
論文 参考訳(メタデータ) (2024-02-03T18:19:46Z) - Enhancing Gaussian Process Surrogates for Optimization and Posterior Approximation via Random Exploration [2.984929040246293]
ガウス過程シュロゲートモデルの精度を高めるために、ランダムな探索ステップに依存する新しいノイズフリーベイズ最適化戦略。
新しいアルゴリズムは、古典的なGP-UCBの実装の容易さを維持しているが、さらなる探索がそれらの収束を促進する。
論文 参考訳(メタデータ) (2024-01-30T14:16:06Z) - Scalable Bayesian Meta-Learning through Generalized Implicit Gradients [64.21628447579772]
Inlicit Bayesian Meta-learning (iBaML) 法は、学習可能な事前のスコープを広げるだけでなく、関連する不確実性も定量化する。
解析誤差境界は、明示的よりも一般化された暗黙的勾配の精度と効率を示すために確立される。
論文 参考訳(メタデータ) (2023-03-31T02:10:30Z) - A Particle-based Sparse Gaussian Process Optimizer [5.672919245950197]
本稿では,下降の動的過程を利用した新しいスワム・スワムベースのフレームワークを提案する。
このアプローチの最大の利点は、降下を決定する前に現在の状態についてより深い探索を行うことである。
論文 参考訳(メタデータ) (2022-11-26T09:06:15Z) - Generalizing Bayesian Optimization with Decision-theoretic Entropies [102.82152945324381]
統計的決定論の研究からシャノンエントロピーの一般化を考える。
まず,このエントロピーの特殊なケースがBO手順でよく用いられる獲得関数に繋がることを示す。
次に、損失に対する選択肢の選択が、どのようにして柔軟な獲得関数の族をもたらすかを示す。
論文 参考訳(メタデータ) (2022-10-04T04:43:58Z) - Outlier-Robust Sparse Estimation via Non-Convex Optimization [73.18654719887205]
空間的制約が存在する場合の高次元統計量と非破壊的最適化の関連について検討する。
これらの問題に対する新規で簡単な最適化法を開発した。
結論として、効率よくステーションに収束する一階法は、これらのタスクに対して効率的なアルゴリズムを導出する。
論文 参考訳(メタデータ) (2021-09-23T17:38:24Z) - High-Dimensional Bayesian Optimisation with Variational Autoencoders and
Deep Metric Learning [119.91679702854499]
本研究では,高次元の入力空間上でベイズ最適化を行うためのディープ・メトリック・ラーニングに基づく手法を提案する。
このような帰納バイアスを、利用可能なラベル付きデータの1%だけを用いて達成する。
実証的な貢献として、実世界の高次元ブラックボックス最適化問題に対する最先端の結果を示す。
論文 参考訳(メタデータ) (2021-06-07T13:35:47Z) - Directed particle swarm optimization with Gaussian-process-based
function forecasting [15.733136147164032]
パーティクルスワム最適化 (PSO) は、探索空間を囲む一組の候補解を、ランダム化されたステップ長を持つ最もよく知られたグローバルおよびローカルな解へ移動させる反復探索法である。
本アルゴリズムは探索的・搾取的行動に対して望ましい特性が得られることを示す。
論文 参考訳(メタデータ) (2021-02-08T13:02:57Z) - Zeroth-Order Hybrid Gradient Descent: Towards A Principled Black-Box
Optimization Framework [100.36569795440889]
この作業は、一階情報を必要としない零次最適化(ZO)の反復である。
座標重要度サンプリングにおける優雅な設計により,ZO最適化法は複雑度と関数クエリコストの両面において効率的であることを示す。
論文 参考訳(メタデータ) (2020-12-21T17:29:58Z) - Uncertainty Quantification for Bayesian Optimization [12.433600693422235]
目的関数の最大点(あるいは値)の信頼領域を構築することにより、ベイズ最適化アルゴリズムの出力不確実性を評価する新しい手法を提案する。
我々の理論は、既存のシーケンシャルサンプリングポリシーと停止基準に対する統一的な不確実性定量化フレームワークを提供する。
論文 参考訳(メタデータ) (2020-02-04T22:48:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。