論文の概要: Memory-based Ensemble Learning in CMR Semantic Segmentation
- arxiv url: http://arxiv.org/abs/2502.09269v2
- Date: Mon, 17 Feb 2025 10:42:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:11:43.937768
- Title: Memory-based Ensemble Learning in CMR Semantic Segmentation
- Title(参考訳): CMRセマンティックセグメンテーションにおけるメモリベースアンサンブル学習
- Authors: Yiwei Liu, Ziyi Wu, Liang Zhong, Lingyi Wen, Yuankai Wu,
- Abstract要約: 我々は空間的連続性を利用して分節分散から大域的不確実性を抽出する。
エンドスライス精度を定量化するためにエンド係数(EC)を導入する。
我々のフレームワークは、ほぼ最先端のDice similarity Coefficient(DSC)を実現し、エンドスライス性能で全てのモデルを上回る性能を発揮する。
- 参考スコア(独自算出の注目度): 15.576887655828028
- License:
- Abstract: Existing models typically segment either the entire 3D frame or 2D slices independently to derive clinical functional metrics from ventricular segmentation in cardiac cine sequences. While performing well overall, they struggle at the end slices. To address this, we leverage spatial continuity to extract global uncertainty from segmentation variance and use it as memory in our ensemble learning method, Streaming, for classifier weighting, balancing overall and end-slice performance. Additionally, we introduce the End Coefficient (EC) to quantify end-slice accuracy. Experiments on ACDC and M&Ms datasets show that our framework achieves near-state-of-the-art Dice Similarity Coefficient (DSC) and outperforms all models on end-slice performance, improving patient-specific segmentation accuracy.
- Abstract(参考訳): 既存のモデルは通常、3Dフレーム全体または2Dスライスを独立にセグメンテーションし、心臓血管配列の心室セグメンテーションから臨床機能指標を導出する。
全体的な成績は良好だが、最後には苦戦している。
これを解決するために,空間的連続性を活用してセグメント分割分散から大域的不確実性を抽出し,アンサンブル学習手法であるStreamingのメモリとして使用し,分類器重み付け,総合的および終末的性能のバランスをとる。
さらに、エンドスライス精度を定量化するためにエンド係数(EC)を導入する。
ACDCとM&Msデータセットの実験により、我々のフレームワークは、ほぼ最先端のDice similarity Coefficient(DSC)を達成し、エンドスライス性能で全てのモデルを上回る性能を示し、患者固有のセグメンテーション精度を向上させる。
関連論文リスト
- Every Component Counts: Rethinking the Measure of Success for Medical Semantic Segmentation in Multi-Instance Segmentation Tasks [60.80828925396154]
本稿では,新しいセマンティックセグメンテーション評価プロトコルであるConnected-Component (CC)-Metricsを提案する。
本研究は,全体PET/CTにおけるセマンティックセグメンテーションの一般的な医療シナリオにおいて,この設定を動機付けている。
既存のセマンティックセグメンテーションのメトリクスが、より大きな接続コンポーネントに対するバイアスにどのように悩まされているかを示す。
論文 参考訳(メタデータ) (2024-10-24T12:26:05Z) - TotalSegmentator MRI: Sequence-Independent Segmentation of 59 Anatomical Structures in MR images [62.53931644063323]
本研究では,TotalSegmentatorをMR画像に拡張した。
このデータセットに基づいてnnU-Netセグメンテーションアルゴリズムを訓練し、類似度係数(Dice)を計算し、モデルの性能を評価した。
このモデルは、他の2つの公開セグメンテーションモデル(Dice score 0.824 vs 0.762; p0.001 and 0.762 versus 0.542; p)を大きく上回った。
論文 参考訳(メタデータ) (2024-05-29T20:15:54Z) - Stitching, Fine-tuning, Re-training: A SAM-enabled Framework for Semi-supervised 3D Medical Image Segmentation [40.79197318484472]
SAMファインチューニングは, 医用画像のセグメンテーションにおいて, 完全に教師された方法で顕著な性能を示した。
SFR(Stitching, Fine-tuning, Re-training)という3段階のフレームワークを提案する。
我々のSFRフレームワークはプラグイン・アンド・プレイであり、様々な人気のある半教師付き手法と容易に互換性がある。
論文 参考訳(メタデータ) (2024-03-17T14:30:56Z) - UNETR++: Delving into Efficient and Accurate 3D Medical Image Segmentation [93.88170217725805]
本稿では,高画質なセグメンテーションマスクと,パラメータ,計算コスト,推論速度の両面での効率性を提供するUNETR++という3次元医用画像セグメンテーション手法を提案する。
我々の設計の核となるのは、空間的およびチャネル的な識別的特徴を効率的に学習する、新しい効率的な対注意ブロック(EPA)の導入である。
Synapse, BTCV, ACDC, BRaTs, Decathlon-Lungの5つのベンチマークで評価した結果, 効率と精度の両面で, コントリビューションの有効性が示された。
論文 参考訳(メタデータ) (2022-12-08T18:59:57Z) - Ensemble uncertainty as a criterion for dataset expansion in distinct
bone segmentation from upper-body CT images [0.7388859384645263]
個々の骨の局所化と分節化は多くの計画およびナビゲーションアプリケーションにおいて重要な前処理ステップである。
上半身CTにおいて125個の異なる骨を分割できるエンドツーエンド学習アルゴリズムを提案する。
また、アンサンブルベースの不確実性対策も提供し、スキャンを単一にしてトレーニングデータセットを拡大します。
論文 参考訳(メタデータ) (2022-08-19T08:39:23Z) - FCN-Transformer Feature Fusion for Polyp Segmentation [12.62213319797323]
大腸内視鏡は大腸癌の早期発見のための金標準法として広く認められている。
大腸内視鏡画像におけるポリープのマニュアルセグメンテーションは時間を要する。
ポリプセグメンテーションの自動化におけるディープラーニングの利用が重要になっている。
論文 参考訳(メタデータ) (2022-08-17T15:31:06Z) - Multi-organ Segmentation Network with Adversarial Performance Validator [10.775440368500416]
本稿では,2次元から3次元のセグメンテーションフレームワークに対向的な性能検証ネットワークを導入する。
提案したネットワークは, 2次元粗い結果から3次元高品質なセグメンテーションマスクへの変換を行い, 共同最適化によりセグメンテーション精度が向上する。
NIH膵分節データセットの実験では、提案したネットワークが小臓器分節の最先端の精度を達成し、過去の最高性能を上回った。
論文 参考訳(メタデータ) (2022-04-16T18:00:29Z) - Inconsistency-aware Uncertainty Estimation for Semi-supervised Medical
Image Segmentation [92.9634065964963]
我々は、不確実性推定と個別の自己学習戦略に基づいて、新しい半教師付きセグメンテーションモデル、すなわち保守的ラディカルネットワーク(CoraNet)を提案する。
現在の技術と比較すると、ColaNetは優れたパフォーマンスを示しています。
論文 参考訳(メタデータ) (2021-10-17T08:49:33Z) - A persistent homology-based topological loss for CNN-based multi-class
segmentation of CMR [5.898114915426535]
心臓磁気共鳴(CMR)画像のマルチクラスセグメンテーションは、既知の構造と構成を持つ解剖学的構成要素にデータの分離を求める。
最も一般的なCNNベースの手法は、解剖を特徴付ける空間的に拡張された特徴を無視した画素ワイズ損失関数を用いて最適化されている。
これらのアプローチは、全てのクラスラベルとクラスラベルペアのリッチなトポロジカル記述を構築することで、マルチクラスセグメンテーションのタスクに拡張する。
論文 参考訳(メタデータ) (2021-07-27T09:21:38Z) - Channelized Axial Attention for Semantic Segmentation [70.14921019774793]
チャネルアキシャルアテンション(CAA)を提案し、チャネルアテンションと軸アテンションをシームレスに統合し、計算複雑性を低減します。
私たちのCAAは、DANetのような他の注意モデルに比べて計算リソースをはるかに少なくするだけでなく、すべての検証済みデータセット上で最先端のResNet-101ベースのセグメンテーションモデルよりも優れています。
論文 参考訳(メタデータ) (2021-01-19T03:08:03Z) - clDice -- A Novel Topology-Preserving Loss Function for Tubular
Structure Segmentation [57.20783326661043]
中心線Dice (short clDice) と呼ばれる新しい類似度尺度を導入する。
理論的には、clDiceは2次元および3次元のセグメンテーションにおけるホモトピー同値までのトポロジー保存を保証する。
我々は、船舶、道路、ニューロン(2Dと3D)を含む5つの公開データセットでソフトクライス損失をベンチマークした。
論文 参考訳(メタデータ) (2020-03-16T16:27:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。