Dynamic Rolling Horizon Optimization for Network-Constrained V2X Value Stacking of Electric Vehicles Under Uncertainties
- URL: http://arxiv.org/abs/2502.09290v1
- Date: Thu, 13 Feb 2025 13:06:56 GMT
- Title: Dynamic Rolling Horizon Optimization for Network-Constrained V2X Value Stacking of Electric Vehicles Under Uncertainties
- Authors: Canchen Jiang, Ariel Liebman, Bo Jie, Hao Wang,
- Abstract summary: Electric vehicle (EV) coordination can provide significant benefits through vehicle-to-everything (V2X)
This work aims to develop a V2X value-stacking framework, including vehicle-to-building (V2B), vehicle-to-grid (V2G), and energy trading.
- Score: 4.43248614452072
- License:
- Abstract: Electric vehicle (EV) coordination can provide significant benefits through vehicle-to-everything (V2X) by interacting with the grid, buildings, and other EVs. This work aims to develop a V2X value-stacking framework, including vehicle-to-building (V2B), vehicle-to-grid (V2G), and energy trading, to maximize economic benefits for residential communities while maintaining distribution voltage. This work also seeks to quantify the impact of prediction errors related to building load, renewable energy, and EV arrivals. A dynamic rolling-horizon optimization (RHO) method is employed to leverage multiple revenue streams and maximize the potential of EV coordination. To address energy uncertainties, including hourly local building load, local photovoltaic (PV) generation, and EV arrivals, this work develops a Transformer-based forecasting model named Gated Recurrent Units-Encoder-Temporal Fusion Decoder (GRU-EN-TFD). The simulation results, using real data from Australia's National Electricity Market, and the Independent System Operators in New England and New York in the US, reveal that V2X value stacking can significantly reduce energy costs. The proposed GRU-EN-TFD model outperforms the benchmark forecast model. Uncertainties in EV arrivals have a more substantial impact on value-stacking performance, highlighting the significance of its accurate forecast. This work provides new insights into the dynamic interactions among residential communities, unlocking the full potential of EV batteries.
Related papers
- Uncertainty-Aware Critic Augmentation for Hierarchical Multi-Agent EV Charging Control [9.96602699887327]
We propose HUCA, a novel real-time charging control for regulating energy demands for both the building and EVs.
HUCA employs hierarchical actor-critic networks to dynamically reduce electricity costs in buildings, accounting for the needs of EV charging in the dynamic pricing scenario.
Experiments on real-world electricity datasets under both simulated certain and uncertain departure scenarios demonstrate that HUCA outperforms baselines in terms of total electricity costs.
arXiv Detail & Related papers (2024-12-23T23:45:45Z) - Hybrid-Generative Diffusion Models for Attack-Oriented Twin Migration in Vehicular Metaverses [58.264499654343226]
Vehicle Twins (VTs) are digital twins that provide immersive virtual services for Vehicular Metaverse Users (VMUs)
High mobility of vehicles, uneven deployment of edge servers, and potential security threats pose challenges to achieving efficient and reliable VT migrations.
We propose a secure and reliable VT migration framework in vehicular metaverses.
arXiv Detail & Related papers (2024-07-05T11:11:33Z) - Electric Vehicles coordination for grid balancing using multi-objective
Harris Hawks Optimization [0.0]
The rise of renewables coincides with the shift towards Electrical Vehicles (EVs) posing technical and operational challenges for the energy balance of the local grid.
Coordinating power flow from multiple EVs into the grid requires sophisticated algorithms and load-balancing strategies.
This paper proposes an EVs fleet coordination model for the day ahead aiming to ensure a reliable energy supply and maintain a stable local grid.
arXiv Detail & Related papers (2023-11-24T15:50:37Z) - Charge Manipulation Attacks Against Smart Electric Vehicle Charging Stations and Deep Learning-based Detection Mechanisms [49.37592437398933]
"Smart" electric vehicle charging stations (EVCSs) will be a key step toward achieving green transportation.
We investigate charge manipulation attacks (CMAs) against EV charging, in which an attacker manipulates the information exchanged during smart charging operations.
We propose an unsupervised deep learning-based mechanism to detect CMAs by monitoring the parameters involved in EV charging.
arXiv Detail & Related papers (2023-10-18T18:38:59Z) - MARL for Decentralized Electric Vehicle Charging Coordination with V2V
Energy Exchange [5.442116840518914]
This paper addresses the EV charging coordination by considering vehicle-to-vehicle (V2V) energy exchange.
We propose a Multi-Agent Reinforcement Learning (MARL) approach to coordinate EV charging with V2V energy exchange.
arXiv Detail & Related papers (2023-08-27T14:06:21Z) - Federated Reinforcement Learning for Real-Time Electric Vehicle Charging
and Discharging Control [42.17503767317918]
This paper develops an optimal EV charging/discharging control strategy for different EV users under dynamic environments.
A horizontal federated reinforcement learning (HFRL)-based method is proposed to fit various users' behaviors and dynamic environments.
Simulation results illustrate that the proposed real-time EV charging/discharging control strategy can perform well among various factors.
arXiv Detail & Related papers (2022-10-04T08:22:46Z) - V2X-ViT: Vehicle-to-Everything Cooperative Perception with Vision
Transformer [58.71845618090022]
We build a holistic attention model, namely V2X-ViT, to fuse information across on-road agents.
V2X-ViT consists of alternating layers of heterogeneous multi-agent self-attention and multi-scale window self-attention.
To validate our approach, we create a large-scale V2X perception dataset.
arXiv Detail & Related papers (2022-03-20T20:18:25Z) - An Energy Consumption Model for Electrical Vehicle Networks via Extended
Federated-learning [50.85048976506701]
This paper proposes a novel solution to range anxiety based on a federated-learning model.
It is capable of estimating battery consumption and providing energy-efficient route planning for vehicle networks.
arXiv Detail & Related papers (2021-11-13T15:03:44Z) - Predicting vehicles parking behaviour in shared premises for aggregated
EV electricity demand response programs [3.448121798373834]
We propose a methodology to predict an estimation of the parking duration in shared parking premises.
We formalize the prediction problem as a supervised machine learning task to predict the duration of the parking event.
This predicted duration feeds the energy management system that will allocate the power over the duration reducing the overall peak electricity demand.
arXiv Detail & Related papers (2021-09-20T16:33:17Z) - Fed-BEV: A Federated Learning Framework for Modelling Energy Consumption
of Battery Electric Vehicles [5.817576247456001]
Battery electric vehicles (BEVs) exclusively use chemical energy stored in their battery packs for propulsion.
We propose a novel framework for modelling energy consumption for BEVs (Fed-BEV)
More specifically, a group of BEVs involved in the Fed-BEV framework can learn from each other to jointly enhance their energy consumption model.
arXiv Detail & Related papers (2021-08-05T01:56:09Z) - Universal Battery Performance and Degradation Model for Electric
Aircraft [52.77024349608834]
Design, analysis, and operation of electric vertical takeoff and landing aircraft (eVTOLs) requires fast and accurate prediction of Li-ion battery performance.
We generate a battery performance and thermal behavior dataset specific to eVTOL duty cycles.
We use this dataset to develop a battery performance and degradation model (Cellfit) which employs physics-informed machine learning.
arXiv Detail & Related papers (2020-07-06T16:10:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.