Indeterminacy in Affective Computing: Considering Meaning and Context in Data Collection Practices
- URL: http://arxiv.org/abs/2502.09294v1
- Date: Thu, 13 Feb 2025 13:08:42 GMT
- Title: Indeterminacy in Affective Computing: Considering Meaning and Context in Data Collection Practices
- Authors: Bernd Dudzik, Tiffany Matej Hrkalovic, Chenxu Hao, Chirag Raman, Masha Tsfasman,
- Abstract summary: Research on human affect indicates a form of complexity that is fundamental to such meaning.
We argue that a crucial step in adequately addressing indeterminacy in AAP is the development of data collection practices.
- Score: 2.9709595802045725
- License:
- Abstract: Automatic Affect Prediction (AAP) uses computational analysis of input data such as text, speech, images, and physiological signals to predict various affective phenomena (e.g., emotions or moods). These models are typically constructed using supervised machine-learning algorithms, which rely heavily on labeled training datasets. In this position paper, we posit that all AAP training data are derived from human Affective Interpretation Processes, resulting in a form of Affective Meaning. Research on human affect indicates a form of complexity that is fundamental to such meaning: it can possess what we refer to here broadly as Qualities of Indeterminacy (QIs) - encompassing Subjectivity (meaning depends on who is interpreting), Uncertainty (lack of confidence regarding meanings' correctness), Ambiguity (meaning contains mutually exclusive concepts) and Vagueness (meaning is situated at different levels in a nested hierarchy). Failing to appropriately consider QIs leads to results incapable of meaningful and reliable predictions. Based on this premise, we argue that a crucial step in adequately addressing indeterminacy in AAP is the development of data collection practices for modeling corpora that involve the systematic consideration of 1) a relevant set of QIs and 2) context for the associated interpretation processes. To this end, we are 1) outlining a conceptual model of AIPs and the QIs associated with the meaning these produce and a conceptual structure of relevant context, supporting understanding of its role. Finally, we use our framework for 2) discussing examples of context-sensitivity-related challenges for addressing QIs in data collection setups. We believe our efforts can stimulate a structured discussion of both the role of aspects of indeterminacy and context in research on AAP, informing the development of better practices for data collection and analysis.
Related papers
- Explaining the Unexplained: Revealing Hidden Correlations for Better Interpretability [1.8274323268621635]
Real Explainer (RealExp) is an interpretability method that decouples the Shapley Value into individual feature importance and feature correlation importance.
RealExp enhances interpretability by precisely quantifying both individual feature contributions and their interactions.
arXiv Detail & Related papers (2024-12-02T10:50:50Z) - DiPlomat: A Dialogue Dataset for Situated Pragmatic Reasoning [89.92601337474954]
Pragmatic reasoning plays a pivotal role in deciphering implicit meanings that frequently arise in real-life conversations.
We introduce a novel challenge, DiPlomat, aiming at benchmarking machines' capabilities on pragmatic reasoning and situated conversational understanding.
arXiv Detail & Related papers (2023-06-15T10:41:23Z) - Explaining Explainability: Towards Deeper Actionable Insights into Deep
Learning through Second-order Explainability [70.60433013657693]
Second-order explainable AI (SOXAI) was recently proposed to extend explainable AI (XAI) from the instance level to the dataset level.
We demonstrate for the first time, via example classification and segmentation cases, that eliminating irrelevant concepts from the training set based on actionable insights from SOXAI can enhance a model's performance.
arXiv Detail & Related papers (2023-06-14T23:24:01Z) - Neural Causal Models for Counterfactual Identification and Estimation [62.30444687707919]
We study the evaluation of counterfactual statements through neural models.
First, we show that neural causal models (NCMs) are expressive enough.
Second, we develop an algorithm for simultaneously identifying and estimating counterfactual distributions.
arXiv Detail & Related papers (2022-09-30T18:29:09Z) - Inherent Inconsistencies of Feature Importance [6.02357145653815]
Feature importance is a method that assigns scores to the contribution of individual features on prediction outcomes.
This paper presents an axiomatic framework designed to establish coherent relationships among the different contexts of feature importance scores.
arXiv Detail & Related papers (2022-06-16T14:21:51Z) - Textual Explanations and Critiques in Recommendation Systems [8.406549970145846]
dissertation focuses on two fundamental challenges of addressing this need.
The first involves explanation generation in a scalable and data-driven manner.
The second challenge consists in making explanations actionable, and we refer to it as critiquing.
arXiv Detail & Related papers (2022-05-15T11:59:23Z) - Context-LGM: Leveraging Object-Context Relation for Context-Aware Object
Recognition [48.5398871460388]
We propose a novel Contextual Latent Generative Model (Context-LGM), which considers the object-context relation and models it in a hierarchical manner.
To infer contextual features, we reformulate the objective function of Variational Auto-Encoder (VAE), where contextual features are learned as a posterior conditioned distribution on the object.
The effectiveness of our method is verified by state-of-the-art performance on two context-aware object recognition tasks.
arXiv Detail & Related papers (2021-10-08T11:31:58Z) - Out of Context: A New Clue for Context Modeling of Aspect-based
Sentiment Analysis [54.735400754548635]
ABSA aims to predict the sentiment expressed in a review with respect to a given aspect.
The given aspect should be considered as a new clue out of context in the context modeling process.
We design several aspect-aware context encoders based on different backbones.
arXiv Detail & Related papers (2021-06-21T02:26:03Z) - Weakly-Supervised Aspect-Based Sentiment Analysis via Joint
Aspect-Sentiment Topic Embedding [71.2260967797055]
We propose a weakly-supervised approach for aspect-based sentiment analysis.
We learn sentiment, aspect> joint topic embeddings in the word embedding space.
We then use neural models to generalize the word-level discriminative information.
arXiv Detail & Related papers (2020-10-13T21:33:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.