論文の概要: Galileo: Learning Global and Local Features in Pretrained Remote Sensing Models
- arxiv url: http://arxiv.org/abs/2502.09356v1
- Date: Thu, 13 Feb 2025 14:21:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-14 20:05:35.303511
- Title: Galileo: Learning Global and Local Features in Pretrained Remote Sensing Models
- Title(参考訳): Galileo: 事前トレーニングされたリモートセンシングモデルにおけるグローバルな特徴とローカルな特徴の学習
- Authors: Gabriel Tseng, Anthony Fuller, Marlena Reil, Henry Herzog, Patrick Beukema, Favyen Bastani, James R. Green, Evan Shelhamer, Hannah Kerner, David Rolnick,
- Abstract要約: 大規模・小規模両方の特徴を学習するための,新しい,かつ効果的な自己指導型学習手法を提案する。
我々のガリレオモデルは様々なリモートセンシングタスクにまたがって最先端の結果を得る。
- 参考スコア(独自算出の注目度): 34.71460539414284
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: From crop mapping to flood detection, machine learning in remote sensing has a wide range of societally beneficial applications. The commonalities between remote sensing data in these applications present an opportunity for pretrained machine learning models tailored to remote sensing to reduce the labeled data and effort required to solve individual tasks. However, such models must be: (i) flexible enough to ingest input data of varying sensor modalities and shapes (i.e., of varying spatial and temporal dimensions), and (ii) able to model Earth surface phenomena of varying scales and types. To solve this gap, we present Galileo, a family of pretrained remote sensing models designed to flexibly process multimodal remote sensing data. We also introduce a novel and highly effective self-supervised learning approach to learn both large- and small-scale features, a challenge not addressed by previous models. Our Galileo models obtain state-of-the-art results across diverse remote sensing tasks.
- Abstract(参考訳): 作物のマッピングから洪水検出まで、リモートセンシングにおける機械学習は、社会的に有益な幅広い応用がある。
これらのアプリケーションにおけるリモートセンシングデータの共通性は、個別のタスクを解決するために必要なラベル付きデータと労力を減らすために、リモートセンシングに適した事前訓練された機械学習モデルを提供する。
しかし、そのようなモデルは以下のとおりでなければならない。
一 様々なセンサの形状(空間的・時間的寸法の異なるもの)の入力データを取り込むのに十分な柔軟性を有すること。
(II) 様々なスケールや種類の地球表面現象をモデル化することができる。
このギャップを解決するために,マルチモーダルリモートセンシングデータを柔軟に処理するための事前学習型リモートセンシングモデルであるGalileoを提案する。
また,大規模・小規模両方の特徴を学習するための,新規かつ効果的な自己教師型学習手法も導入した。
我々のガリレオモデルは様々なリモートセンシングタスクにまたがって最先端の結果を得る。
関連論文リスト
- A Survey on Remote Sensing Foundation Models: From Vision to Multimodality [35.532200523631765]
リモートセンシングのための視覚とマルチモーダル基礎モデルは、インテリジェントな地理空間データ解釈能力を大幅に向上させた。
データタイプの多様性、大規模アノテートデータセットの必要性、マルチモーダル融合技術の複雑さは、これらのモデルの効果的なデプロイに重大な障害をもたらす。
本稿では、リモートセンシングのための最先端のビジョンモデルとマルチモーダル基礎モデルについて、アーキテクチャ、トレーニング方法、データセット、アプリケーションシナリオに焦点をあててレビューする。
論文 参考訳(メタデータ) (2025-03-28T01:57:35Z) - SM3Det: A Unified Model for Multi-Modal Remote Sensing Object Detection [73.49799596304418]
本稿では,リモートセンシングのためのマルチモーダルデータセットとマルチタスクオブジェクト検出(M2Det)という新しいタスクを提案する。
水平方向または指向方向の物体を、あらゆるセンサーから正確に検出するように設計されている。
この課題は、1)マルチモーダルモデリングの管理に関わるトレードオフ、2)マルチタスク最適化の複雑さに起因する。
論文 参考訳(メタデータ) (2024-12-30T02:47:51Z) - RemoteDet-Mamba: A Hybrid Mamba-CNN Network for Multi-modal Object Detection in Remote Sensing Images [13.98477009749389]
我々は,RemoteDet-Mambaと呼ばれる,四方向選択的走査型融合方式を用いたマルチモーダルリモートセンシングネットワークを提案する。
RemoteDet-Mambaは、単一モードのローカル機能の学習とパッチレベルのグローバル機能の統合を同時に促進する。
DroneVehicleデータセットの実験結果は、RemoteDet-Mambaの有効性を示している。
論文 参考訳(メタデータ) (2024-10-17T13:20:20Z) - Deep Multimodal Fusion for Semantic Segmentation of Remote Sensing Earth Observation Data [0.08192907805418582]
本稿では,セマンティックセグメンテーションのための後期融合深層学習モデル(LF-DLM)を提案する。
1つのブランチは、UNetFormerがキャプチャした空中画像の詳細なテクスチャと、ViT(Multi-Axis Vision Transformer)バックボーンを統合する。
もう一方のブランチは、U-ViNet(U-TAE)を用いてSentinel-2衛星画像Max時系列から複雑な時間ダイナミクスをキャプチャする。
論文 参考訳(メタデータ) (2024-10-01T07:50:37Z) - Deep Generative Models in Robotics: A Survey on Learning from Multimodal Demonstrations [52.11801730860999]
近年、ロボット学習コミュニティは、大規模なデータセットの複雑さを捉えるために、深層生成モデルを使うことへの関心が高まっている。
本稿では,エネルギーベースモデル,拡散モデル,アクションバリューマップ,生成的敵ネットワークなど,コミュニティが探求してきたさまざまなモデルについて述べる。
また,情報生成から軌道生成,コスト学習に至るまで,深層生成モデルを用いた様々なアプリケーションについて述べる。
論文 参考訳(メタデータ) (2024-08-08T11:34:31Z) - Multi-view Aggregation Network for Dichotomous Image Segmentation [76.75904424539543]
Dichotomous Image (DIS) は近年,高解像度自然画像からの高精度物体分割に向けて出現している。
既存の手法は、グローバルなローカライゼーションと局所的な洗練を徐々に完了させるために、退屈な複数のエンコーダ・デコーダストリームとステージに依存している。
これに触発されて、我々は多視点オブジェクト認識問題としてdisをモデル化し、擬似多視点アグリゲーションネットワーク(MVANet)を提供する。
一般的なdis-5Kデータセットの実験では、我々のMVANetは精度と速度の両方で最先端の手法を大きく上回っている。
論文 参考訳(メタデータ) (2024-04-11T03:00:00Z) - Rethinking Transformers Pre-training for Multi-Spectral Satellite
Imagery [78.43828998065071]
教師なし学習の最近の進歩は、下流タスクにおける有望な結果を達成するための大きな視覚モデルの可能性を示している。
このような事前学習技術は、大量の未学習データが利用可能であることから、リモートセンシング領域でも最近研究されている。
本稿では,マルチモーダルで効果的に活用されるマルチスケール情報の事前学習と活用について述べる。
論文 参考訳(メタデータ) (2024-03-08T16:18:04Z) - Physics Sensor Based Deep Learning Fall Detection System [0.9128828609564524]
我々は,組込みセンサを用いたデータ受信装置を備えたTSFallDetectというシステムを構築した。
我々は、慣性およびフィルム圧力センサによって収集されたデータに基づいて、この降下動作予測問題に対処するために、シーケンシャルな深層学習手法を利用する。
論文 参考訳(メタデータ) (2024-02-29T07:50:06Z) - Bi-directional Adapter for Multi-modal Tracking [67.01179868400229]
汎用の双方向アダプタを用いたマルチモーダル視覚プロンプト追跡モデルを提案する。
我々は、モーダリティ固有の情報をあるモーダリティから別のモーダリティへ転送するための、シンプルだが効果的なライト・フィーチャー・アダプタを開発した。
本モデルでは,完全微調整法と素早い学習法の両方と比較して,追跡性能が優れている。
論文 参考訳(メタデータ) (2023-12-17T05:27:31Z) - Physical-Layer Semantic-Aware Network for Zero-Shot Wireless Sensing [74.12670841657038]
デバイスレスワイヤレスセンシングは、幅広い没入型人間機械対話型アプリケーションをサポートする可能性から、近年、大きな関心を集めている。
無線信号におけるデータの均一性と分散センシングにおけるデータプライバシ規制は、広域ネットワークシステムにおける無線センシングの広範な適用を妨げる主要な課題であると考えられている。
そこで本研究では,ラベル付きデータを使わずに,一箇所ないし限られた箇所で構築されたモデルを直接他の場所に転送できるゼロショット無線センシングソリューションを提案する。
論文 参考訳(メタデータ) (2023-12-08T13:50:30Z) - Learn to Unlearn for Deep Neural Networks: Minimizing Unlearning
Interference with Gradient Projection [56.292071534857946]
最近のデータプライバシ法は、機械学習への関心を喚起している。
課題は、残りのデータセットに関する知識を変更することなく、忘れたデータに関する情報を捨てることである。
我々は、プロジェクテッド・グラディエント・アンラーニング(PGU)という、プロジェクテッド・グラディエント・ベースの学習手法を採用する。
トレーニングデータセットがもはやアクセスできない場合でも、スクラッチからスクラッチで再トレーニングされたモデルと同じような振る舞いをするモデルを、我々のアンラーニング手法が生成できることを実証するための実証的な証拠を提供する。
論文 参考訳(メタデータ) (2023-12-07T07:17:24Z) - General-Purpose Multimodal Transformer meets Remote Sensing Semantic
Segmentation [35.100738362291416]
マルチモーダルAIは、特にセマンティックセグメンテーションのような複雑なタスクのために、補完的なデータソースを活用する。
汎用マルチモーダルネットワークの最近のトレンドは、最先端の性能を達成する大きな可能性を示している。
本稿では,3次元畳み込みを利用して重要なローカル情報をエンコードし,同時にモーダルな特徴を学習するUNet型モジュールを提案する。
論文 参考訳(メタデータ) (2023-07-07T04:58:34Z) - UnLoc: A Universal Localization Method for Autonomous Vehicles using
LiDAR, Radar and/or Camera Input [51.150605800173366]
UnLocは、全ての気象条件におけるマルチセンサー入力によるローカライズのための、新しい統一型ニューラルネットワークアプローチである。
本手法は,Oxford Radar RobotCar,Apollo SouthBay,Perth-WAの各データセットで広く評価されている。
論文 参考訳(メタデータ) (2023-07-03T04:10:55Z) - Lightweight, Pre-trained Transformers for Remote Sensing Timeseries [33.44703824007848]
Prestoは、リモートセンシングピクセル時系列データに基づいて事前訓練されたモデルである。
世界中に分散したリモートセンシングタスクに優れ、より大きなモデルと競争的に機能する。
論文 参考訳(メタデータ) (2023-04-27T09:52:35Z) - Extending global-local view alignment for self-supervised learning with remote sensing imagery [1.5192294544599656]
自己教師付きモデルは、大量のラベルのないデータに対して擬似ラベルを生成するプレテキストタスクを定式化することにより、一般的な特徴表現を取得する。
DINOに触発されて、リモートセンシング画像(SSLRS)を用いた自己教師型学習のための2つのプレテキストタスクを定式化した。
我々は,DINOを拡張し,単一の固定サイズではなく,様々な大きさの作物の局所的なビューを利用するDINO-MCを提案する。
論文 参考訳(メタデータ) (2023-03-12T14:24:10Z) - Semantic Segmentation of Vegetation in Remote Sensing Imagery Using Deep
Learning [77.34726150561087]
本稿では,公開されているリモートセンシングデータからなるマルチモーダル・大規模時間データセットを作成するためのアプローチを提案する。
我々は、異なる種類の植生を分離できる畳み込みニューラルネットワーク(CNN)モデルを使用する。
論文 参考訳(メタデータ) (2022-09-28T18:51:59Z) - MetaGraspNet: A Large-Scale Benchmark Dataset for Scene-Aware
Ambidextrous Bin Picking via Physics-based Metaverse Synthesis [72.85526892440251]
本稿では,物理に基づくメタバース合成により構築した大規模写真リアリスティックビンピックデータセットであるMetaGraspNetを紹介する。
提案データセットは,82種類の記事に対して217kのRGBD画像を含み,オブジェクト検出,アモーダル認識,キーポイント検出,操作順序,および並列ジャウと真空グリップパー用のアンビデクストグリップラベルの完全なアノテーションを備える。
また,2.3k以上の完全アノテートされた高品質なRGBD画像からなる実際のデータセットを5段階の難易度と,異なるオブジェクトおよびレイアウト特性を評価するための見えないオブジェクトセットに分割する。
論文 参考訳(メタデータ) (2022-08-08T08:15:34Z) - DDPM-CD: Denoising Diffusion Probabilistic Models as Feature Extractors
for Change Detection [31.125812018296127]
Deno Diffusion Probabilistic Model (DDPM) の事前学習による変化検出のための新しいアプローチを提案する。
DDPMは、訓練画像を徐々にマルコフ連鎖を用いてガウス分布に変換することにより、トレーニングデータ分布を学習する。
推論(サンプリング)中に、トレーニング分布に近い多様なサンプルセットを生成することができる。
LEVIR-CD, WHU-CD, DSIFN-CD, CDDデータセットを用いて行った実験により,提案手法は既存の変化検出法よりもF1スコアで大幅に優れており, I。
論文 参考訳(メタデータ) (2022-06-23T17:58:29Z) - Self-supervised Audiovisual Representation Learning for Remote Sensing Data [96.23611272637943]
遠隔センシングにおける深層ニューラルネットワークの事前学習のための自己教師型アプローチを提案する。
ジオタグ付きオーディオ記録とリモートセンシングの対応を利用して、これは完全にラベルなしの方法で行われる。
提案手法は,既存のリモートセンシング画像の事前学習方法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-08-02T07:50:50Z) - Transformer-Based Behavioral Representation Learning Enables Transfer
Learning for Mobile Sensing in Small Datasets [4.276883061502341]
時系列から一般化可能な特徴表現を学習できるモバイルセンシングデータのためのニューラルネットワークフレームワークを提供する。
このアーキテクチャは、CNNとTrans-formerアーキテクチャの利点を組み合わせて、より良い予測性能を実現する。
論文 参考訳(メタデータ) (2021-07-09T22:26:50Z) - Inertial Sensor Data To Image Encoding For Human Action Recognition [0.0]
畳み込みニューラルネットワーク(CNN)は、コンピュータビジョンの分野で成功したディープラーニングモデルである。
本稿では,慣性センサデータから活動画像への変換に4種類の空間領域法を用いる。
マルチモーダル・フュージョン・フレームワークを構築するために,2つの空間領域フィルタを結合して各種類のアクティビティ・イメージをマルチモーダル化した。
論文 参考訳(メタデータ) (2021-05-28T01:22:52Z) - Model-Based Visual Planning with Self-Supervised Functional Distances [104.83979811803466]
モデルに基づく視覚的目標達成のための自己監視手法を提案する。
私たちのアプローチは、オフラインでラベルなしのデータを使って完全に学習します。
このアプローチは,モデルフリーとモデルベース先行手法の両方で大幅に性能が向上することがわかった。
論文 参考訳(メタデータ) (2020-12-30T23:59:09Z) - Invariant Feature Learning for Sensor-based Human Activity Recognition [11.334750079923428]
被験者やデバイス間で共有される共通情報を抽出する不変特徴学習フレームワーク(IFLF)を提案する。
実験により、IFLFは、一般的なオープンデータセットと社内データセットをまたいだ主題とデバイスディバージョンの両方を扱うのに効果的であることが示された。
論文 参考訳(メタデータ) (2020-12-14T21:56:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。