Language Agents as Digital Representatives in Collective Decision-Making
- URL: http://arxiv.org/abs/2502.09369v1
- Date: Thu, 13 Feb 2025 14:35:40 GMT
- Title: Language Agents as Digital Representatives in Collective Decision-Making
- Authors: Daniel Jarrett, Miruna Pîslar, Michiel A. Bakker, Michael Henry Tessler, Raphael Köster, Jan Balaguer, Romuald Elie, Christopher Summerfield, Andrea Tacchetti,
- Abstract summary: "representation" is the activity of making an individual's preferences present in the process via participation by a proxy agent.
We investigate the possibility of training textitlanguage agents to behave in the capacity of representatives of human agents.
- Score: 22.656601943922066
- License:
- Abstract: Consider the process of collective decision-making, in which a group of individuals interactively select a preferred outcome from among a universe of alternatives. In this context, "representation" is the activity of making an individual's preferences present in the process via participation by a proxy agent -- i.e. their "representative". To this end, learned models of human behavior have the potential to fill this role, with practical implications for multi-agent scenario studies and mechanism design. In this work, we investigate the possibility of training \textit{language agents} to behave in the capacity of representatives of human agents, appropriately expressing the preferences of those individuals whom they stand for. First, we formalize the setting of \textit{collective decision-making} -- as the episodic process of interaction between a group of agents and a decision mechanism. On this basis, we then formalize the problem of \textit{digital representation} -- as the simulation of an agent's behavior to yield equivalent outcomes from the mechanism. Finally, we conduct an empirical case study in the setting of \textit{consensus-finding} among diverse humans, and demonstrate the feasibility of fine-tuning large language models to act as digital representatives.
Related papers
- Artificial Agency and Large Language Models [0.0]
Large Language Models (LLMs) have stirred up philosophical debates about the possibility of realizing agency in an artificial manner.
We present a theoretical model that can be used as a threshold conception for artificial agents.
arXiv Detail & Related papers (2024-07-23T05:32:00Z) - PersLLM: A Personified Training Approach for Large Language Models [66.16513246245401]
We propose PersLLM, integrating psychology-grounded principles of personality: social practice, consistency, and dynamic development.
We incorporate personality traits directly into the model parameters, enhancing the model's resistance to induction, promoting consistency, and supporting the dynamic evolution of personality.
arXiv Detail & Related papers (2024-07-17T08:13:22Z) - Understanding Your Agent: Leveraging Large Language Models for Behavior
Explanation [7.647395374489533]
We propose an approach to generate natural language explanations for an agent's behavior based only on observations of states and actions.
We show that our approach generates explanations as helpful as those produced by a human domain expert.
arXiv Detail & Related papers (2023-11-29T20:16:23Z) - On the Discussion of Large Language Models: Symmetry of Agents and
Interplay with Prompts [51.3324922038486]
This paper reports the empirical results of the interplay of prompts and discussion mechanisms.
It also proposes a scalable discussion mechanism based on conquer and merge.
arXiv Detail & Related papers (2023-11-13T04:56:48Z) - AgentCF: Collaborative Learning with Autonomous Language Agents for
Recommender Systems [112.76941157194544]
We propose AgentCF for simulating user-item interactions in recommender systems through agent-based collaborative filtering.
We creatively consider not only users but also items as agents, and develop a collaborative learning approach that optimize both kinds of agents together.
Overall, the optimized agents exhibit diverse interaction behaviors within our framework, including user-item, user-user, item-item, and collective interactions.
arXiv Detail & Related papers (2023-10-13T16:37:14Z) - Explaining Agent Behavior with Large Language Models [7.128139268426959]
We propose an approach to generate natural language explanations for an agent's behavior based only on observations of states and actions.
We show how a compact representation of the agent's behavior can be learned and used to produce plausible explanations.
arXiv Detail & Related papers (2023-09-19T06:13:24Z) - Mimetic Models: Ethical Implications of AI that Acts Like You [5.843033621853535]
An emerging theme in artificial intelligence research is the creation of models to simulate the decisions and behavior of specific people.
We develop a framework for characterizing the ethical and social issues raised by their growing availability.
arXiv Detail & Related papers (2022-07-19T16:41:36Z) - Inverse Online Learning: Understanding Non-Stationary and Reactionary
Policies [79.60322329952453]
We show how to develop interpretable representations of how agents make decisions.
By understanding the decision-making processes underlying a set of observed trajectories, we cast the policy inference problem as the inverse to this online learning problem.
We introduce a practical algorithm for retrospectively estimating such perceived effects, alongside the process through which agents update them.
Through application to the analysis of UNOS organ donation acceptance decisions, we demonstrate that our approach can bring valuable insights into the factors that govern decision processes and how they change over time.
arXiv Detail & Related papers (2022-03-14T17:40:42Z) - Multi-Agent Imitation Learning with Copulas [102.27052968901894]
Multi-agent imitation learning aims to train multiple agents to perform tasks from demonstrations by learning a mapping between observations and actions.
In this paper, we propose to use copula, a powerful statistical tool for capturing dependence among random variables, to explicitly model the correlation and coordination in multi-agent systems.
Our proposed model is able to separately learn marginals that capture the local behavioral patterns of each individual agent, as well as a copula function that solely and fully captures the dependence structure among agents.
arXiv Detail & Related papers (2021-07-10T03:49:41Z) - Towards Socially Intelligent Agents with Mental State Transition and
Human Utility [97.01430011496576]
We propose to incorporate a mental state and utility model into dialogue agents.
The hybrid mental state extracts information from both the dialogue and event observations.
The utility model is a ranking model that learns human preferences from a crowd-sourced social commonsense dataset.
arXiv Detail & Related papers (2021-03-12T00:06:51Z) - Modelling Agent Policies with Interpretable Imitation Learning [12.858982225307809]
We outline an approach to imitation learning for reverse-engineering black box agent policies in MDP environments.
We explicitly model and learn agents' latent state representations by selecting from a large space of candidate features constructed from the Markov state.
arXiv Detail & Related papers (2020-06-19T18:19:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.