論文の概要: FARM: Frequency-Aware Model for Cross-Domain Live-Streaming Recommendation
- arxiv url: http://arxiv.org/abs/2502.09375v1
- Date: Thu, 13 Feb 2025 14:44:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-14 13:47:01.628897
- Title: FARM: Frequency-Aware Model for Cross-Domain Live-Streaming Recommendation
- Title(参考訳): FARM: クロスドメインライブストリーミングレコメンデーションのための周波数認識モデル
- Authors: Xiaodong Li, Ruochen Yang, Shuang Wen, Shen Wang, Yueyang Liu, Guoquan Wang, Weisong Hu, Qiang Luo, Jiawei Sheng, Tingwen Liu, Jiangxia Cao, Shuang Yang, Zhaojie Liu,
- Abstract要約: FARMと呼ばれるクロスドメインライブストリーミングレコメンデーションのための周波数認識モデルを提案する。
当社のFARMはオンラインライブストリーミングサービスにデプロイされており、現在Kuaishou上で数億人のユーザにサービスを提供しています。
- 参考スコア(独自算出の注目度): 24.07417561307543
- License:
- Abstract: Live-streaming services have attracted widespread popularity due to their real-time interactivity and entertainment value. Users can engage with live-streaming authors by participating in live chats, posting likes, or sending virtual gifts to convey their preferences and support. However, the live-streaming services faces serious data-sparsity problem, which can be attributed to the following two points: (1) User's valuable behaviors are usually sparse, e.g., like, comment and gift, which are easily overlooked by the model, making it difficult to describe user's personalized preference. (2) The main exposure content on our platform is short-video, which is 9 times higher than the exposed live-streaming, leading to the inability of live-streaming content to fully model user preference. To this end, we propose a Frequency-Aware Model for Cross-Domain Live-Streaming Recommendation, termed as FARM. Specifically, we first present the intra-domain frequency aware module to enable our model to perceive user's sparse yet valuable behaviors, i.e., high-frequency information, supported by the Discrete Fourier Transform (DFT). To transfer user preference across the short-video and live-streaming domains, we propose a novel preference align before fuse strategy, which consists of two parts: the cross-domain preference align module to align user preference in both domains with contrastive learning, and the cross-domain preference fuse module to further fuse user preference in both domains using a serious of tailor-designed attention mechanisms. Extensive offline experiments and online A/B testing on Kuaishou live-streaming services demonstrate the effectiveness and superiority of FARM. Our FARM has been deployed in online live-streaming services and currently serves hundreds of millions of users on Kuaishou.
- Abstract(参考訳): ライブストリーミングサービスは、リアルタイムの対話性とエンターテイメントの価値により、広く普及している。
ユーザーは、ライブチャットに参加したり、いいね!を投稿したり、仮想ギフトを送って好みやサポートを伝えることができる。
しかし, ライブストリーミングサービスでは, 利用者の貴重な行動は通常, コメントやギフトなど, モデルによって容易に見落とされ, ユーザのパーソナライズされた好みの記述が困難である,という2点に起因して, 深刻なデータ疎結合問題に直面している。
2) プラットフォーム上の主要な露出コンテンツはショートビデオであり, 露出したライブストリーミングの9倍の高さであり, ユーザの嗜好をモデル化できない。
この目的のために、FARMと呼ばれるクロスドメインライブストリーミングレコメンデーションのための周波数認識モデルを提案する。
具体的には、まずドメイン内周波数認識モジュールを提示し、そのモデルがユーザのスパースで価値ある振る舞い、すなわち離散フーリエ変換(DFT)によってサポートされている高周波情報を知覚できるようにする。
本稿では,両ドメインのユーザ嗜好をコントラスト学習で整合させるクロスドメイン選好調整モジュールと,両ドメインのユーザ選好をさらに融合させるクロスドメイン選好ヒューズモジュールの2つの部分からなる,ヒューズ戦略以前の新規な選好調整を提案する。
大規模なオフライン実験とKuaishouライブストリーミングサービスのオンラインA/Bテストは、FARMの有効性と優位性を示している。
当社のFARMはオンラインライブストリーミングサービスにデプロイされており、現在Kuaishou上で数億人のユーザにサービスを提供しています。
関連論文リスト
- DisCo: Graph-Based Disentangled Contrastive Learning for Cold-Start Cross-Domain Recommendation [11.61586672399166]
クロスドメインレコメンデーション(CDR)が有望なソリューションとして登場した。
しかし、ソースドメインに類似した好みを持つユーザは、ターゲットドメインに対して異なる関心を示す可能性がある。
そこで本稿では,ユーザ意図の微粒化を捉えるために,グラフに基づく非交叉型コントラスト学習フレームワークを提案する。
論文 参考訳(メタデータ) (2024-12-19T16:20:42Z) - Modeling Domain and Feedback Transitions for Cross-Domain Sequential Recommendation [60.09293734134179]
$textTransition2$は、ドメインとユーザフィードバックのタイプの両方にわたるトランジションをモデル化する新しい方法です。
ユーザ履歴に基づいた遷移対応グラフエンコーダを導入し,フィードバックタイプに応じて異なる重みをエッジに割り当てる。
我々は、異なるタイプの遷移を識別するために、様々なマスクを組み込んで、クロストランジション・マルチヘッド・セルフアテンションを用いて、ユーザ履歴をエンコードする。
論文 参考訳(メタデータ) (2024-08-15T15:18:55Z) - Cross-domain Transfer of Valence Preferences via a Meta-optimization Approach [17.545983294377958]
CVPMはメタラーニングと自己教師型学習のハイブリッドアーキテクチャとして、ドメイン間の関心伝達を形式化する。
ユーザの好みに対する深い洞察を得て、差別化されたエンコーダを使って分布を学習する。
特に、各ユーザのマッピングを共通の変換とパーソナライズされたバイアスの2つの部分として扱い、そこでは、パーソナライズされたバイアスを生成するネットワークがメタラーナーによって出力される。
論文 参考訳(メタデータ) (2024-06-24T10:02:24Z) - MMBee: Live Streaming Gift-Sending Recommendations via Multi-Modal Fusion and Behaviour Expansion [18.499672566131355]
ギフトインタラクションの正確なモデリングは、ユーザのエクスペリエンスを向上するだけでなく、ストリーマーの収益も増大させる。
従来のレコメンデーション問題として,ライブストリーミングギフト予測に関する先行研究がある。
実時間マルチモーダル・フュージョンとビヘイビア・エクスパンジョンに基づくMMBeeを提案する。
論文 参考訳(メタデータ) (2024-06-15T04:59:00Z) - Exploring User Retrieval Integration towards Large Language Models for Cross-Domain Sequential Recommendation [66.72195610471624]
Cross-Domain Sequential Recommendationは、異なるドメイン間でユーザのシーケンシャルな好みをマイニングし、転送することを目的としている。
本稿では,ユーザ検索手法を探索し,CDSRの性能向上を目的とした URLLM という新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-05T09:19:54Z) - Exploiting Graph Structured Cross-Domain Representation for Multi-Domain
Recommendation [71.45854187886088]
マルチドメインレコメンデータシステムは、クロスドメイン表現学習とポジティブな知識伝達の恩恵を受ける。
我々はMAGRecと呼ばれる手法のコンテキスト情報として時間的ドメイン内相互作用とドメイン間相互作用を用いる。
我々は、MAGRecが最先端の手法を一貫して上回る様々なシナリオで、公開データセットで実験を行う。
論文 参考訳(メタデータ) (2023-02-12T19:51:32Z) - Diverse Preference Augmentation with Multiple Domains for Cold-start
Recommendations [92.47380209981348]
メタラーニングをベースとした多元的ドメインを用いた多元的推論拡張フレームワークを提案する。
我々は、疎結合の場合の過度な適合を扱うために、新しい関心領域において多様な評価を生成する。
これらの評価は、選好メタラーナーを学ぶためのメタトレーニング手順に導入され、優れた一般化能力が得られる。
論文 参考訳(メタデータ) (2022-04-01T10:10:50Z) - Cross-domain User Preference Learning for Cold-start Recommendation [32.83868293457142]
クロスドメインのコールドスタートレコメンデーションは、リコメンデーションシステムにとってますます問題になっている。
ソースドメインからユーザの好みを学習し、ターゲットドメインに転送することが重要です。
そこで本稿では,コールドスタートの推薦をさまざまなセマンティックタグで対象とする,自己学習型クロスドメインユーザ優先学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-12-07T12:57:05Z) - Dual Attentive Sequential Learning for Cross-Domain Click-Through Rate
Prediction [76.98616102965023]
クロスドメインレコメンダシステムは、コールドスタートとスパシティの問題に対処するための強力な方法である。
本稿では,二元学習機構に基づくクロスドメインシーケンシャルなレコメンデーション手法を提案する。
論文 参考訳(メタデータ) (2021-06-05T01:21:21Z) - CATN: Cross-Domain Recommendation for Cold-Start Users via Aspect
Transfer Network [49.35977893592626]
コールドスタートユーザのためのアスペクト転送ネットワークによるクロスドメインレコメンデーションフレームワーク(CATN)を提案する。
CATNは、レビュー文書から各ユーザと各アイテムの複数のアスペクトを抽出し、注意機構を用いてドメイン間のアスペクト相関を学習する。
実世界のデータセットでは、提案したCATNは、評価予測精度の点でSOTAモデルよりも大幅に優れている。
論文 参考訳(メタデータ) (2020-05-21T10:05:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。