A Deep Inverse-Mapping Model for a Flapping Robotic Wing
- URL: http://arxiv.org/abs/2502.09378v1
- Date: Thu, 13 Feb 2025 14:46:04 GMT
- Title: A Deep Inverse-Mapping Model for a Flapping Robotic Wing
- Authors: Hadar Sharvit, Raz Karl, Tsevi Beatus,
- Abstract summary: In systems control, the dynamics of a system are governed by its inputs to achieve a desired outcome.
In flapping-wing robots, intricate fluid motions are involved, mapping inputs (wing kinematics) to outcomes (aerodynamic forces) is nontrivial.
Here, we report a machine-learning solution for the inverse mapping of a flapping-wing system based on data from an experimental system we have developed.
- Score: 0.0
- License:
- Abstract: In systems control, the dynamics of a system are governed by modulating its inputs to achieve a desired outcome. For example, to control the thrust of a quad-copter propeller the controller modulates its rotation rate, relying on a straightforward mapping between the input rotation rate and the resulting thrust. This mapping can be inverted to determine the rotation rate needed to generate a desired thrust. However, in complex systems, such as flapping-wing robots where intricate fluid motions are involved, mapping inputs (wing kinematics) to outcomes (aerodynamic forces) is nontrivial and inverting this mapping for real-time control is computationally impractical. Here, we report a machine-learning solution for the inverse mapping of a flapping-wing system based on data from an experimental system we have developed. Our model learns the input wing motion required to generate a desired aerodynamic force outcome. We used a sequence-to-sequence model tailored for time-series data and augmented it with a novel adaptive-spectrum layer that implements representation learning in the frequency domain. To train our model, we developed a flapping wing system that simultaneously measures the wing's aerodynamic force and its 3D motion using high-speed cameras. We demonstrate the performance of our system on an additional open-source dataset of a flapping wing in a different flow regime. Results show superior performance compared with more complex state-of-the-art transformer-based models, with 11% improvement on the test datasets median loss. Moreover, our model shows superior inference time, making it practical for onboard robotic control. Our open-source data and framework may improve modeling and real-time control of systems governed by complex dynamics, from biomimetic robots to biomedical devices.
Related papers
- A Geometry-Aware Message Passing Neural Network for Modeling Aerodynamics over Airfoils [61.60175086194333]
aerodynamics is a key problem in aerospace engineering, often involving flows interacting with solid objects such as airfoils.
Here, we consider modeling of incompressible flows over solid objects, wherein geometric structures are a key factor in determining aerodynamics.
To effectively incorporate geometries, we propose a message passing scheme that efficiently and expressively integrates the airfoil shape with the mesh representation.
These design choices lead to a purely data-driven machine learning framework known as GeoMPNN, which won the Best Student Submission award at the NeurIPS 2024 ML4CFD Competition, placing 4th overall.
arXiv Detail & Related papers (2024-12-12T16:05:39Z) - Gaussian Splatting to Real World Flight Navigation Transfer with Liquid Networks [93.38375271826202]
We present a method to improve generalization and robustness to distribution shifts in sim-to-real visual quadrotor navigation tasks.
We first build a simulator by integrating Gaussian splatting with quadrotor flight dynamics, and then, train robust navigation policies using Liquid neural networks.
In this way, we obtain a full-stack imitation learning protocol that combines advances in 3D Gaussian splatting radiance field rendering, programming of expert demonstration training data, and the task understanding capabilities of Liquid networks.
arXiv Detail & Related papers (2024-06-21T13:48:37Z) - Inverted Landing in a Small Aerial Robot via Deep Reinforcement Learning
for Triggering and Control of Rotational Maneuvers [11.29285364660789]
Inverted landing in a rapid and robust manner is a challenging feat for aerial robots, especially while depending entirely on onboard sensing and computation.
Previous work has identified a direct causal connection between a series of onboard visual cues and kinematic actions that allow for reliable execution of this challenging aerobatic maneuver in small aerial robots.
In this work, we first utilized Deep Reinforcement Learning and a physics-based simulation to obtain a general, optimal control policy for robust inverted landing.
arXiv Detail & Related papers (2022-09-22T14:38:10Z) - Data-Driven Machine Learning Models for a Multi-Objective Flapping Fin
Unmanned Underwater Vehicle Control System [0.5522489572615558]
We develop a search-based inverse model that leverages a kinematics-to-thrust neural network model for control system design.
We demonstrate how a control system integrating this inverse model can make online, cycle-to-cycle adjustments to prioritize different system objectives.
arXiv Detail & Related papers (2022-09-14T01:55:15Z) - Real-to-Sim: Predicting Residual Errors of Robotic Systems with Sparse
Data using a Learning-based Unscented Kalman Filter [65.93205328894608]
We learn the residual errors between a dynamic and/or simulator model and the real robot.
We show that with the learned residual errors, we can further close the reality gap between dynamic models, simulations, and actual hardware.
arXiv Detail & Related papers (2022-09-07T15:15:12Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
Accurately modeling quadrotor's system dynamics is critical for guaranteeing agile, safe, and stable navigation.
We present a novel Physics-Inspired Temporal Convolutional Network (PI-TCN) approach to learning quadrotor's system dynamics purely from robot experience.
Our approach combines the expressive power of sparse temporal convolutions and dense feed-forward connections to make accurate system predictions.
arXiv Detail & Related papers (2022-06-07T13:51:35Z) - End-to-End Learning of Hybrid Inverse Dynamics Models for Precise and
Compliant Impedance Control [16.88250694156719]
We present a novel hybrid model formulation that enables us to identify fully physically consistent inertial parameters of a rigid body dynamics model.
We compare our approach against state-of-the-art inverse dynamics models on a 7 degree of freedom manipulator.
arXiv Detail & Related papers (2022-05-27T07:39:28Z) - Visual-tactile sensing for Real-time liquid Volume Estimation in
Grasping [58.50342759993186]
We propose a visuo-tactile model for realtime estimation of the liquid inside a deformable container.
We fuse two sensory modalities, i.e., the raw visual inputs from the RGB camera and the tactile cues from our specific tactile sensor.
The robotic system is well controlled and adjusted based on the estimation model in real time.
arXiv Detail & Related papers (2022-02-23T13:38:31Z) - OSCAR: Data-Driven Operational Space Control for Adaptive and Robust
Robot Manipulation [50.59541802645156]
Operational Space Control (OSC) has been used as an effective task-space controller for manipulation.
We propose OSC for Adaptation and Robustness (OSCAR), a data-driven variant of OSC that compensates for modeling errors.
We evaluate our method on a variety of simulated manipulation problems, and find substantial improvements over an array of controller baselines.
arXiv Detail & Related papers (2021-10-02T01:21:38Z) - Learning to Locomote with Deep Neural-Network and CPG-based Control in a
Soft Snake Robot [19.80726424244039]
We present a new locomotion control method for soft robot snakes inspired by biological snakes.
The performance of the proposed controller is experimentally validated with both simulated and real soft snake robots.
arXiv Detail & Related papers (2020-01-13T04:32:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.