Transformer-Enhanced Variational Autoencoder for Crystal Structure Prediction
- URL: http://arxiv.org/abs/2502.09423v1
- Date: Thu, 13 Feb 2025 15:45:36 GMT
- Title: Transformer-Enhanced Variational Autoencoder for Crystal Structure Prediction
- Authors: Ziyi Chen, Yang Yuan, Siming Zheng, Jialong Guo, Sihan Liang, Yangang Wang, Zongguo Wang,
- Abstract summary: We propose a Transformer-Enhanced Variational Autoencoder for Crystal Structure Prediction (TransVAE-CSP)
TransVAE-CSP learns the characteristic distribution space of stable materials, enabling both the reconstruction and generation of crystal structures.
Experimental results on the carbon_24, perov_5, and mp_20 datasets demonstrate that TransVAE-CSP outperforms existing methods in structure reconstruction and generation tasks.
- Score: 16.846289696048647
- License:
- Abstract: Crystal structure forms the foundation for understanding the physical and chemical properties of materials. Generative models have emerged as a new paradigm in crystal structure prediction(CSP), however, accurately capturing key characteristics of crystal structures, such as periodicity and symmetry, remains a significant challenge. In this paper, we propose a Transformer-Enhanced Variational Autoencoder for Crystal Structure Prediction (TransVAE-CSP), who learns the characteristic distribution space of stable materials, enabling both the reconstruction and generation of crystal structures. TransVAE-CSP integrates adaptive distance expansion with irreducible representation to effectively capture the periodicity and symmetry of crystal structures, and the encoder is a transformer network based on an equivariant dot product attention mechanism. Experimental results on the carbon_24, perov_5, and mp_20 datasets demonstrate that TransVAE-CSP outperforms existing methods in structure reconstruction and generation tasks under various modeling metrics, offering a powerful tool for crystal structure design and optimization.
Related papers
- CrystalGRW: Generative Modeling of Crystal Structures with Targeted Properties via Geodesic Random Walks [1.2141052067494946]
We introduce CrystalGRW, a diffusion-based generative model that can predict stable phases validated by density functional theory.
CrystalGRW demonstrates the ability to generate realistic crystal structures that are close to their ground states with accuracy comparable to existing models.
These features help accelerate materials discovery and inverse design by offering stable, symmetry-consistent crystal candidates for experimental validation.
arXiv Detail & Related papers (2025-01-15T18:26:35Z) - Efficient Symmetry-Aware Materials Generation via Hierarchical Generative Flow Networks [52.13486402193811]
New solid-state materials require rapidly exploring the vast space of crystal structures and locating stable regions.
Existing methods struggle to explore large material spaces and generate diverse samples with desired properties and requirements.
We propose a novel generative model employing a hierarchical exploration strategy to efficiently exploit the symmetry of the materials space to generate crystal structures given desired properties.
arXiv Detail & Related papers (2024-11-06T23:53:34Z) - Generative Hierarchical Materials Search [91.93125016916463]
We propose Generative Hierarchical Materials Search (GenMS) for controllable generation of crystal structures.
GenMS consists of (1) a language model that takes high-level natural language as input and generates intermediate textual information about a crystal.
GenMS additionally uses a graph neural network to predict properties (e.g., formation energy) from the generated crystal structures.
arXiv Detail & Related papers (2024-09-10T17:51:28Z) - Complete and Efficient Graph Transformers for Crystal Material Property Prediction [53.32754046881189]
Crystal structures are characterized by atomic bases within a primitive unit cell that repeats along a regular lattice throughout 3D space.
We introduce a novel approach that utilizes the periodic patterns of unit cells to establish the lattice-based representation for each atom.
We propose ComFormer, a SE(3) transformer designed specifically for crystalline materials.
arXiv Detail & Related papers (2024-03-18T15:06:37Z) - Crystalformer: Infinitely Connected Attention for Periodic Structure Encoding [10.170537065646323]
Predicting physical properties of materials from their crystal structures is a fundamental problem in materials science.
We show that crystal structures are infinitely repeating, periodic arrangements of atoms, whose fully connected attention results in infinitely connected attention.
We propose a simple yet effective Transformer-based encoder architecture for crystal structures called Crystalformer.
arXiv Detail & Related papers (2024-03-18T11:37:42Z) - Scalable Diffusion for Materials Generation [99.71001883652211]
We develop a unified crystal representation that can represent any crystal structure (UniMat)
UniMat can generate high fidelity crystal structures from larger and more complex chemical systems.
We propose additional metrics for evaluating generative models of materials.
arXiv Detail & Related papers (2023-10-18T15:49:39Z) - Latent Conservative Objective Models for Data-Driven Crystal Structure
Prediction [62.36797874900395]
In computational chemistry, crystal structure prediction is an optimization problem.
One approach to tackle this problem involves building simulators based on density functional theory (DFT) followed by running search in simulation.
We show that our approach, dubbed LCOMs (latent conservative objective models), performs comparably to the best current approaches in terms of success rate of structure prediction.
arXiv Detail & Related papers (2023-10-16T04:35:44Z) - Crystal-GFN: sampling crystals with desirable properties and constraints [103.79058968784163]
We introduce Crystal-GFN, a generative model of crystal structures that sequentially samples structural properties of crystalline materials.
In this paper, we use as objective the formation energy per atom of a crystal structure predicted by a new proxy machine learning model trained on MatBench.
The results demonstrate that Crystal-GFN is able to sample highly diverse crystals with low (median -3.1 eV/atom) predicted formation energy.
arXiv Detail & Related papers (2023-10-07T21:36:55Z) - Crystal Structure Prediction by Joint Equivariant Diffusion [27.52168842448489]
Crystal Structure Prediction (CSP) is crucial in various scientific disciplines.
This paper proposes DiffCSP, a novel diffusion model to learn the structure distribution from stable crystals.
arXiv Detail & Related papers (2023-07-30T15:46:33Z) - Neural Structure Fields with Application to Crystal Structure
Autoencoders [10.680545976155173]
We propose neural structure fields (NeSF) as an accurate and practical approach for representing crystal structures using neural networks.
NeSF overcomes the tradeoff between spatial resolution and computational complexity and can represent any crystal structure.
We propose an autoencoder of crystal structures that can recover various crystal structures, such as those of perovskite structure materials and cuprate superconductors.
arXiv Detail & Related papers (2022-12-08T16:41:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.