Neural Structure Fields with Application to Crystal Structure
Autoencoders
- URL: http://arxiv.org/abs/2212.13120v2
- Date: Thu, 14 Dec 2023 04:11:24 GMT
- Title: Neural Structure Fields with Application to Crystal Structure
Autoencoders
- Authors: Naoya Chiba, Yuta Suzuki, Tatsunori Taniai, Ryo Igarashi, Yoshitaka
Ushiku, Kotaro Saito, Kanta Ono
- Abstract summary: We propose neural structure fields (NeSF) as an accurate and practical approach for representing crystal structures using neural networks.
NeSF overcomes the tradeoff between spatial resolution and computational complexity and can represent any crystal structure.
We propose an autoencoder of crystal structures that can recover various crystal structures, such as those of perovskite structure materials and cuprate superconductors.
- Score: 10.680545976155173
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Representing crystal structures of materials to facilitate determining them
via neural networks is crucial for enabling machine-learning applications
involving crystal structure estimation. Among these applications, the inverse
design of materials can contribute to explore materials with desired properties
without relying on luck or serendipity. We propose neural structure fields
(NeSF) as an accurate and practical approach for representing crystal
structures using neural networks. Inspired by the concepts of vector fields in
physics and implicit neural representations in computer vision, the proposed
NeSF considers a crystal structure as a continuous field rather than as a
discrete set of atoms. Unlike existing grid-based discretized spatial
representations, the NeSF overcomes the tradeoff between spatial resolution and
computational complexity and can represent any crystal structure. We propose an
autoencoder of crystal structures that can recover various crystal structures,
such as those of perovskite structure materials and cuprate superconductors.
Extensive quantitative results demonstrate the superior performance of the NeSF
compared with the existing grid-based approach.
Related papers
- Efficient Symmetry-Aware Materials Generation via Hierarchical Generative Flow Networks [52.13486402193811]
New solid-state materials require rapidly exploring the vast space of crystal structures and locating stable regions.
Existing methods struggle to explore large material spaces and generate diverse samples with desired properties and requirements.
We propose a novel generative model employing a hierarchical exploration strategy to efficiently exploit the symmetry of the materials space to generate crystal structures given desired properties.
arXiv Detail & Related papers (2024-11-06T23:53:34Z) - Generative Hierarchical Materials Search [91.93125016916463]
We propose Generative Hierarchical Materials Search (GenMS) for controllable generation of crystal structures.
GenMS consists of (1) a language model that takes high-level natural language as input and generates intermediate textual information about a crystal.
GenMS additionally uses a graph neural network to predict properties (e.g., formation energy) from the generated crystal structures.
arXiv Detail & Related papers (2024-09-10T17:51:28Z) - AlphaCrystal-II: Distance matrix based crystal structure prediction using deep learning [4.437756445215657]
We present AlphaCrystal-II, a novel knowledge-based solution that exploits the abundant inter-atomic interaction patterns found in existing crystal structures.
By leveraging the wealth of inter-atomic relationships of known crystal structures, our approach demonstrates remarkable effectiveness and reliability in structure prediction.
arXiv Detail & Related papers (2024-04-07T05:17:43Z) - Crystalformer: Infinitely Connected Attention for Periodic Structure Encoding [10.170537065646323]
Predicting physical properties of materials from their crystal structures is a fundamental problem in materials science.
We show that crystal structures are infinitely repeating, periodic arrangements of atoms, whose fully connected attention results in infinitely connected attention.
We propose a simple yet effective Transformer-based encoder architecture for crystal structures called Crystalformer.
arXiv Detail & Related papers (2024-03-18T11:37:42Z) - Generative Design of Crystal Structures by Point Cloud Representations and Diffusion Model [9.011625935805927]
We present a framework for the generation of synthesizable materials, leveraging a point cloud representation to encode structural information.
Our research stands as a noteworthy contribution to the advancement of materials design and synthesis.
arXiv Detail & Related papers (2024-01-24T02:36:52Z) - Scalable Diffusion for Materials Generation [99.71001883652211]
We develop a unified crystal representation that can represent any crystal structure (UniMat)
UniMat can generate high fidelity crystal structures from larger and more complex chemical systems.
We propose additional metrics for evaluating generative models of materials.
arXiv Detail & Related papers (2023-10-18T15:49:39Z) - Latent Conservative Objective Models for Data-Driven Crystal Structure
Prediction [62.36797874900395]
In computational chemistry, crystal structure prediction is an optimization problem.
One approach to tackle this problem involves building simulators based on density functional theory (DFT) followed by running search in simulation.
We show that our approach, dubbed LCOMs (latent conservative objective models), performs comparably to the best current approaches in terms of success rate of structure prediction.
arXiv Detail & Related papers (2023-10-16T04:35:44Z) - Crystal-GFN: sampling crystals with desirable properties and constraints [103.79058968784163]
We introduce Crystal-GFN, a generative model of crystal structures that sequentially samples structural properties of crystalline materials.
In this paper, we use as objective the formation energy per atom of a crystal structure predicted by a new proxy machine learning model trained on MatBench.
The results demonstrate that Crystal-GFN is able to sample highly diverse crystals with low (median -3.1 eV/atom) predicted formation energy.
arXiv Detail & Related papers (2023-10-07T21:36:55Z) - DeepCrysTet: A Deep Learning Approach Using Tetrahedral Mesh for
Predicting Properties of Crystalline Materials [0.0]
We propose DeepCrysTet, a novel deep learning approach for predicting material properties.
DeepCrysTet uses crystal structures represented as a 3D tetrahedral mesh generated by Delaunay tetrahedralization.
Experiments show that DeepCrysTet significantly outperforms existing GNN models in classifying crystal structures and state-of-the-art performance in predicting elastic properties.
arXiv Detail & Related papers (2023-09-07T05:23:52Z) - Disentangling multiple scattering with deep learning: application to
strain mapping from electron diffraction patterns [48.53244254413104]
We implement a deep neural network called FCU-Net to invert highly nonlinear electron diffraction patterns into quantitative structure factor images.
We trained the FCU-Net using over 200,000 unique dynamical diffraction patterns which include many different combinations of crystal structures.
Our simulated diffraction pattern library, implementation of FCU-Net, and trained model weights are freely available in open source repositories.
arXiv Detail & Related papers (2022-02-01T03:53:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.