Delta-Kick Collimation of Heteronuclear Feshbach Molecules
- URL: http://arxiv.org/abs/2502.09437v1
- Date: Thu, 13 Feb 2025 16:02:52 GMT
- Title: Delta-Kick Collimation of Heteronuclear Feshbach Molecules
- Authors: Timothé Estrampes, José P. D'Incao, Jason R. Williams, Torben A. Schulze, Ernst M. Rasel, Éric Charron, Naceur Gaaloul,
- Abstract summary: We present a theoretical study of delta-kick collimation (DKC) applied to heteronuclear Feshbach molecules.
We demonstrate that DKC enables significant reductions in molecular cloud expansion energies and beam divergence.
This work paves the way for advanced experimental sequences involving ground state molecules, light-pulse molecular interferometry, and applications of dual-species precision measurements.
- Score: 0.16388274377667184
- License:
- Abstract: We present a theoretical study of delta-kick collimation (DKC) applied to heteronuclear Feshbach molecules, focusing on both condensed and thermal ensembles across various interaction and temperature regimes. We demonstrate that DKC enables significant reductions in molecular cloud expansion energies and beam divergence, achieving expansion energies in the picokelvin range, comparable to state-of-the-art results obtained experimentally with atoms. Furthermore, we show that vibrational and translational motions remain strongly decoupled throughout the process, ensuring molecular stability during the delta-kick. This work paves the way for advanced experimental sequences involving degenerate ground state molecules, light-pulse molecular interferometry, and applications of dual-species precision measurements, such as testing the universality of free fall.
Related papers
- Unveiling the Dance of Molecules: Ro-Vibrational Dynamics of Molecules under Intense Illumination at Complex Plasmonic Interfaces [0.0]
The study investigates relaxation dynamics of an ensemble of molecules following intense resonant pump excitation in Fabry-Perot cavities and at three-dimensional plasmonic metasurfaces.
The simulations reveal dramatically modified relaxation pathways inside cavities compared to free space, characterized by persistent molecular alignment.
They also indicate the presence of a previously unreported relaxation stabilization mechanism driven by dephasing of the collective molecular-cavity mode.
arXiv Detail & Related papers (2024-12-03T22:17:35Z) - Simulations of evaporation to deep Fermi degeneracy in microwave-shielded molecules [0.5497663232622965]
We study evaporative cooling in ultracold gases of microwave-shielded polar fermionic molecules.
Our Monte Carlo simulations incorporate accurate two-body elastic and inelastic scattering cross sections.
It is possible to reach $ 10%$ of the Fermi temperature under optimal conditions even in the presence of two-body molecular losses.
arXiv Detail & Related papers (2024-07-19T17:11:44Z) - Bayesian inference of composition-dependent phase diagrams [47.79947989845143]
We develop a method in which Bayesian inference is employed to combine thermodynamic data from molecular dynamics (MD), melting point simulations, and phonon calculations, process these data, and yield a temperature-concentration phase diagram.
The developed algorithm was successfully tested on two binary systems, Ge-Si and K-Na, in the full range of concentrations and temperatures.
arXiv Detail & Related papers (2023-09-03T20:57:10Z) - Dynamics of molecular rotors in bulk superfluid helium [68.8204255655161]
We report on the experimental study of the laser-induced rotation of helium dimers inside the superfluid $4mathrmHe$ bath at variable temperature.
The observed temperature dependence suggests a non-equilibrium evolution of the quantum bath, accompanied by the emission of the wave of second sound.
arXiv Detail & Related papers (2023-04-08T01:22:19Z) - Cavity-Catalyzed Hydrogen Transfer Dynamics in an Entangled Molecular
Ensemble under Vibrational Strong Coupling [0.0]
We numerically solve the Schr"odinger equation to study the cavity-induced quantum dynamics in an ensemble of molecules.
We show that the cavity indeed enforces hydrogen transfer from an enol to an enethiol configuration with transfer rates significantly increasing with light-matter interaction strength.
A non-trivial dependence of the dynamics on ensemble size is found, clearly beyond scaled single-molecule models.
arXiv Detail & Related papers (2023-01-10T16:58:57Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - High-resolution 'magic'-field spectroscopy on trapped polyatomic
molecules [62.997667081978825]
Rapid progress in cooling and trapping of molecules has enabled first experiments on high resolution spectroscopy of trapped diatomic molecules.
Extending this work to polyatomic molecules provides unique opportunities due to more complex geometries and additional internal degrees of freedom.
arXiv Detail & Related papers (2021-10-21T15:46:17Z) - Dipolar evaporation of reactive molecules to below the Fermi temperature [2.9989215527241453]
Inelastic losses in molecular collisions have greatly hampered the engineering of low-entropy molecular systems.
Here, we use an external electric field along with optical lattice confinement to create a two-dimensional (2D) Fermi gas of spin-polarized potassium-rubidium (KRb) polar molecules.
Direct thermalization among the molecules in the trap leads to efficient dipolar cooling, yielding a rapid increase in phase-space density.
arXiv Detail & Related papers (2020-07-23T22:02:59Z) - Effects of Conical Intersections on Hyperfine Quenching of Hydroxyl OH
in collision with an ultracold Sr atom [62.60678272919008]
We report on ultracold collision dynamics of the hydroxyl free-radical OH with Sr atoms leading to quenching of OH hyperfine states.
Our quantum-mechanical calculations of this process reveal that quenching is efficient due to anomalous molecular dynamics in the vicinity of the conical intersection.
arXiv Detail & Related papers (2020-06-26T23:27:25Z) - Dynamical Strengthening of Covalent and Non-Covalent Molecular
Interactions by Nuclear Quantum Effects at Finite Temperature [58.999762016297865]
Nuclear quantum effects (NQE) tend to generate delocalized molecular dynamics.
NQE often enhance electronic interactions and, in turn, can result in dynamical molecular stabilization at finite temperature.
Our findings yield new insights into the versatile role of nuclear quantum fluctuations in molecules and materials.
arXiv Detail & Related papers (2020-06-18T14:30:29Z) - Collective Dissipative Molecule Formation in a Cavity [0.0]
We propose a mechanism to realize high-yield molecular formation from ultracold atoms.
We demonstrate that the molecular yield can be improved by simply increasing the number of atoms.
arXiv Detail & Related papers (2020-02-13T16:25:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.