Mind What You Ask For: Emotional and Rational Faces of Persuasion by Large Language Models
- URL: http://arxiv.org/abs/2502.09687v1
- Date: Thu, 13 Feb 2025 15:15:53 GMT
- Title: Mind What You Ask For: Emotional and Rational Faces of Persuasion by Large Language Models
- Authors: Wiktoria Mieleszczenko-Kowszewicz, Beata Bajcar, Jolanta Babiak, Berenika Dyczek, Jakub Świstak, Przemysław Biecek,
- Abstract summary: Large language models (LLMs) are increasingly effective at persuading us that their answers are valuable.
This study examines what are the psycholinguistic features of the responses used by twelve different language models.
We ask whether and how we can mitigate the risks of LLM-driven mass misinformation.
- Score: 0.0
- License:
- Abstract: Be careful what you ask for, you just might get it. This saying fits with the way large language models (LLMs) are trained, which, instead of being rewarded for correctness, are increasingly rewarded for pleasing the recipient. So, they are increasingly effective at persuading us that their answers are valuable. But what tricks do they use in this persuasion? In this study, we examine what are the psycholinguistic features of the responses used by twelve different language models. By grouping response content according to rational or emotional prompts and exploring social influence principles employed by LLMs, we ask whether and how we can mitigate the risks of LLM-driven mass misinformation. We position this study within the broader discourse on human-centred AI, emphasizing the need for interdisciplinary approaches to mitigate cognitive and societal risks posed by persuasive AI responses.
Related papers
- Persuasion with Large Language Models: a Survey [49.86930318312291]
Large Language Models (LLMs) have created new disruptive possibilities for persuasive communication.
In areas such as politics, marketing, public health, e-commerce, and charitable giving, such LLM Systems have already achieved human-level or even super-human persuasiveness.
Our survey suggests that the current and future potential of LLM-based persuasion poses profound ethical and societal risks.
arXiv Detail & Related papers (2024-11-11T10:05:52Z) - Interactive Dialogue Agents via Reinforcement Learning on Hindsight Regenerations [58.65755268815283]
Many real dialogues are interactive, meaning an agent's utterances will influence their conversational partner, elicit information, or change their opinion.
We use this fact to rewrite and augment existing suboptimal data, and train via offline reinforcement learning (RL) an agent that outperforms both prompting and learning from unaltered human demonstrations.
Our results in a user study with real humans show that our approach greatly outperforms existing state-of-the-art dialogue agents.
arXiv Detail & Related papers (2024-11-07T21:37:51Z) - Measuring and Improving Persuasiveness of Large Language Models [12.134372070736596]
We introduce PersuasionBench and PersuasionArena to measure the persuasiveness of generative models automatically.
Our findings carry key implications for both model developers and policymakers.
arXiv Detail & Related papers (2024-10-03T16:36:35Z) - Rel-A.I.: An Interaction-Centered Approach To Measuring Human-LM Reliance [73.19687314438133]
We study how reliance is affected by contextual features of an interaction.
We find that contextual characteristics significantly affect human reliance behavior.
Our results show that calibration and language quality alone are insufficient in evaluating the risks of human-LM interactions.
arXiv Detail & Related papers (2024-07-10T18:00:05Z) - Measuring and Benchmarking Large Language Models' Capabilities to Generate Persuasive Language [41.052284715017606]
We study the ability of Large Language Models (LLMs) to produce persuasive text.
As opposed to prior work which focuses on particular domains or types of persuasion, we conduct a general study across various domains.
We construct the new dataset Persuasive-Pairs of pairs of pairs of a short text and its rewrite by an LLM to amplify or diminish persuasive language.
arXiv Detail & Related papers (2024-06-25T17:40:47Z) - Large Language Models are as persuasive as humans, but how? About the cognitive effort and moral-emotional language of LLM arguments [0.0]
Large Language Models (LLMs) are already as persuasive as humans.
This paper investigates the persuasion strategies of LLMs, comparing them with human-generated arguments.
arXiv Detail & Related papers (2024-04-14T19:01:20Z) - How do Large Language Models Navigate Conflicts between Honesty and
Helpfulness? [14.706111954807021]
We use psychological models and experiments designed to characterize human behavior to analyze large language models.
We find that reinforcement learning from human feedback improves both honesty and helpfulness.
GPT-4 Turbo demonstrates human-like response patterns including sensitivity to the conversational framing and listener's decision context.
arXiv Detail & Related papers (2024-02-11T19:13:26Z) - Large Language Models Understand and Can be Enhanced by Emotional
Stimuli [53.53886609012119]
We take the first step towards exploring the ability of Large Language Models to understand emotional stimuli.
Our experiments show that LLMs have a grasp of emotional intelligence, and their performance can be improved with emotional prompts.
Our human study results demonstrate that EmotionPrompt significantly boosts the performance of generative tasks.
arXiv Detail & Related papers (2023-07-14T00:57:12Z) - PromptRobust: Towards Evaluating the Robustness of Large Language Models on Adversarial Prompts [76.18347405302728]
This study uses a plethora of adversarial textual attacks targeting prompts across multiple levels: character, word, sentence, and semantic.
The adversarial prompts are then employed in diverse tasks including sentiment analysis, natural language inference, reading comprehension, machine translation, and math problem-solving.
Our findings demonstrate that contemporary Large Language Models are not robust to adversarial prompts.
arXiv Detail & Related papers (2023-06-07T15:37:00Z) - Inducing anxiety in large language models can induce bias [47.85323153767388]
We focus on twelve established large language models (LLMs) and subject them to a questionnaire commonly used in psychiatry.
Our results show that six of the latest LLMs respond robustly to the anxiety questionnaire, producing comparable anxiety scores to humans.
Anxiety-induction not only influences LLMs' scores on an anxiety questionnaire but also influences their behavior in a previously-established benchmark measuring biases such as racism and ageism.
arXiv Detail & Related papers (2023-04-21T16:29:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.