論文の概要: NeuralCFD: Deep Learning on High-Fidelity Automotive Aerodynamics Simulations
- arxiv url: http://arxiv.org/abs/2502.09692v1
- Date: Thu, 13 Feb 2025 17:58:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-17 14:47:23.479854
- Title: NeuralCFD: Deep Learning on High-Fidelity Automotive Aerodynamics Simulations
- Title(参考訳): ニューラルCFD:高忠実度自動車空力シミュレーションの深層学習
- Authors: Maurits Bleeker, Matthias Dorfer, Tobias Kronlachner, Reinhard Sonnleitner, Benedikt Alkin, Johannes Brandstetter,
- Abstract要約: ニューラルネットワークベースのシミュレーションサロゲートが業界規模で実装される前に、大きな課題が克服されなければならない。
我々は幾何学的エンコーディングと物理予測を分離した幾何学保存ユニバーサル物理変換器(GP-UPT)を紹介する。
GP-UPTは、高品質なシミュレーションメッシュの作成を回避し、2000万のメッシュセルで正確な3次元速度場予測を可能にし、低忠実度から高忠実度シミュレーションデータセットへの変換学習を効率化する。
- 参考スコア(独自算出の注目度): 11.849142587216903
- License:
- Abstract: Recent advancements in neural operator learning are paving the way for transformative innovations in fields such as automotive aerodynamics. However, key challenges must be overcome before neural network-based simulation surrogates can be implemented at an industry scale. First, surrogates must become scalable to large surface and volume meshes, especially when using raw geometry inputs only, i.e., without relying on the simulation mesh. Second, surrogates must be trainable with a limited number of high-fidelity numerical simulation samples while still reaching the required performance levels. To this end, we introduce Geometry-preserving Universal Physics Transformer (GP-UPT), which separates geometry encoding and physics predictions, ensuring flexibility with respect to geometry representations and surface sampling strategies. GP-UPT enables independent scaling of the respective parts of the model according to practical requirements, offering scalable solutions to open challenges. GP-UPT circumvents the creation of high-quality simulation meshes, enables accurate 3D velocity field predictions at 20 million mesh cells, and excels in transfer learning from low-fidelity to high-fidelity simulation datasets, requiring less than half of the high-fidelity data to match the performance of models trained from scratch.
- Abstract(参考訳): ニューラル・オペレーター・ラーニングの最近の進歩は、自動車空気力学のような分野における革新的革新の道を開いた。
しかし、ニューラルネットワークベースのシミュレーションサロゲートが業界規模で実装される前には、重要な課題が克服されなければならない。
第一に、サロゲートは、特にシミュレーションメッシュに頼ることなく、生の幾何学的入力のみを使用する場合、大きな表面および体積メッシュに対してスケーラブルでなければならない。
第二に、サロゲートは必要な性能レベルまで到達しながら、限られた数の高忠実度数値シミュレーションサンプルで訓練されなければならない。
この目的のために、幾何符号化と物理予測を分離し、幾何表現と表面サンプリング戦略に関する柔軟性を確保する、幾何保存ユニバーサル物理変換器(GP-UPT)を導入する。
GP-UPTは、実際の要件に従ってモデルの各部分の独立的なスケーリングを可能にし、オープンな課題に対するスケーラブルなソリューションを提供する。
GP-UPTは、高品質なシミュレーションメッシュの作成を回避し、2000万のメッシュセルで正確な3次元速度場予測を可能にし、低忠実度から高忠実度シミュレーションデータセットへの変換学習を優れている。
関連論文リスト
- Multifidelity Simulation-based Inference for Computationally Expensive Simulators [5.863359332854155]
我々は,高忠実度シミュレータのパラメータを限られたシミュレーション予算内で推測するために,安価な低忠実度シミュレーションを活用する,神経後部推定のための多忠実度アプローチであるMF-NPEを紹介する。
MF-NPEは、最大2桁の高忠実度シミュレーションを必要としながら、現在の手法に匹敵する性能を示す。
論文 参考訳(メタデータ) (2025-02-12T13:59:22Z) - Transfer learning in Scalable Graph Neural Network for Improved Physical Simulation [37.1565271299621]
本稿では,グラフネットワークシミュレータのための事前学習・転送学習パラダイムを提案する。
提案手法により,少量のトレーニングデータを微調整した場合に,モデルの性能が向上することを示す。
論文 参考訳(メタデータ) (2025-02-07T08:18:23Z) - Geometry Matters: Benchmarking Scientific ML Approaches for Flow Prediction around Complex Geometries [23.111935712144277]
複雑な地形周辺の流体力学の迅速かつ正確なシミュレーションは、様々な工学的・科学的応用において重要である。
科学機械学習(SciML)は将来性を示しているが、ほとんどの研究は単純な測地に制約されている。
本研究では,複雑な地形上の流動予測のための多様なSciMLモデルをベンチマークすることで,このギャップを解消する。
論文 参考訳(メタデータ) (2024-12-31T00:23:15Z) - GauSim: Registering Elastic Objects into Digital World by Gaussian Simulator [55.02281855589641]
GauSimは、ガウスカーネルを通して表現される現実の弾性物体の動的挙動をキャプチャするために設計された、ニューラルネットワークベースの新しいシミュレータである。
我々は連続体力学を活用し、各カーネルを連続体としてモデル化し、理想化された仮定なしに現実的な変形を考慮に入れた。
ガウシムは質量や運動量保存などの明示的な物理制約を取り入れ、解釈可能な結果と堅牢で物理的に妥当なシミュレーションを確実にする。
論文 参考訳(メタデータ) (2024-12-23T18:58:17Z) - Bridging the Sim-to-Real Gap with Bayesian Inference [53.61496586090384]
データからロボットダイナミクスを学習するためのSIM-FSVGDを提案する。
我々は、ニューラルネットワークモデルのトレーニングを規則化するために、低忠実度物理プリエンスを使用します。
高性能RCレースカーシステムにおけるSIM-to-realギャップのブリッジ化におけるSIM-FSVGDの有効性を実証する。
論文 参考訳(メタデータ) (2024-03-25T11:29:32Z) - Learning Controllable Adaptive Simulation for Multi-resolution Physics [86.8993558124143]
完全深層学習に基づくサロゲートモデルとして,LAMP(Learning Controllable Adaptive Simulation for Multi- resolution Physics)を導入した。
LAMPは、前方進化を学習するためのグラフニューラルネットワーク(GNN)と、空間的洗練と粗大化のポリシーを学ぶためのGNNベースのアクター批判で構成されている。
我々は,LAMPが最先端のディープラーニングサロゲートモデルより優れており,長期予測誤差を改善するために,適応的なトレードオフ計算が可能であることを実証した。
論文 参考訳(メタデータ) (2023-05-01T23:20:27Z) - Real-time simulation of viscoelastic tissue behavior with physics-guided
deep learning [0.8250374560598492]
軟部組織の変位場を粘弾性特性で予測する深層学習法を提案する。
提案手法は従来のCNNモデルよりも精度が高い。
本調査は,仮想現実における深層学習のギャップを埋めるのに役立つものと期待されている。
論文 参考訳(メタデータ) (2023-01-11T18:17:10Z) - Learning Large-scale Subsurface Simulations with a Hybrid Graph Network
Simulator [57.57321628587564]
本研究では3次元地下流体の貯留層シミュレーションを学習するためのハイブリッドグラフネットワークシミュレータ (HGNS) を提案する。
HGNSは、流体の進化をモデル化する地下グラフニューラルネットワーク(SGNN)と、圧力の進化をモデル化する3D-U-Netで構成されている。
産業標準地下フローデータセット(SPE-10)と1100万セルを用いて,HGNSが標準地下シミュレータの18倍の推算時間を短縮できることを実証した。
論文 参考訳(メタデータ) (2022-06-15T17:29:57Z) - Multi-fidelity Hierarchical Neural Processes [79.0284780825048]
多要素代理モデリングは、異なるシミュレーション出力を融合させることで計算コストを削減する。
本稿では,多階層型階層型ニューラルネットワーク(MF-HNP)を提案する。
疫学および気候モデリングタスクにおけるMF-HNPの評価を行い、精度と不確実性評価の観点から競合性能を達成した。
論文 参考訳(メタデータ) (2022-06-10T04:54:13Z) - Machine learning for rapid discovery of laminar flow channel wall
modifications that enhance heat transfer [56.34005280792013]
任意の, 平坦な, 非平坦なチャネルの正確な数値シミュレーションと, ドラッグ係数とスタントン数を予測する機械学習モデルを組み合わせる。
畳み込みニューラルネットワーク(CNN)は,数値シミュレーションのわずかな時間で,目標特性を正確に予測できることを示す。
論文 参考訳(メタデータ) (2021-01-19T16:14:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。