論文の概要: Multifidelity Simulation-based Inference for Computationally Expensive Simulators
- arxiv url: http://arxiv.org/abs/2502.08416v2
- Date: Fri, 14 Feb 2025 14:55:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-17 14:47:48.200034
- Title: Multifidelity Simulation-based Inference for Computationally Expensive Simulators
- Title(参考訳): 計算過渡シミュレーションのための多要素シミュレーションに基づく推論
- Authors: Anastasia N. Krouglova, Hayden R. Johnson, Basile Confavreux, Michael Deistler, Pedro J. Gonçalves,
- Abstract要約: 我々は,高忠実度シミュレータのパラメータを限られたシミュレーション予算内で推測するために,安価な低忠実度シミュレーションを活用する,神経後部推定のための多忠実度アプローチであるMF-NPEを紹介する。
MF-NPEは、最大2桁の高忠実度シミュレーションを必要としながら、現在の手法に匹敵する性能を示す。
- 参考スコア(独自算出の注目度): 5.863359332854155
- License:
- Abstract: Across many domains of science, stochastic models are an essential tool to understand the mechanisms underlying empirically observed data. Models can be of different levels of detail and accuracy, with models of high-fidelity (i.e., high accuracy) to the phenomena under study being often preferable. However, inferring parameters of high-fidelity models via simulation-based inference is challenging, especially when the simulator is computationally expensive. We introduce MF-NPE, a multifidelity approach to neural posterior estimation that leverages inexpensive low-fidelity simulations to infer parameters of high-fidelity simulators within a limited simulation budget. MF-NPE performs neural posterior estimation with limited high-fidelity resources by virtue of transfer learning, with the ability to prioritize individual observations using active learning. On one statistical task with analytical ground-truth and two real-world tasks, MF-NPE shows comparable performance to current approaches while requiring up to two orders of magnitude fewer high-fidelity simulations. Overall, MF-NPE opens new opportunities to perform efficient Bayesian inference on computationally expensive simulators.
- Abstract(参考訳): 科学の多くの領域において、確率モデルは経験的データの基礎となるメカニズムを理解するための重要なツールである。
モデルはディテールと精度の異なるレベルがあり、研究対象の現象に対する高忠実度(すなわち高い精度)のモデルが好まれる。
しかし、特にシミュレータが計算コストが高い場合、シミュレーションベース推論による高忠実度モデルのパラメータの推測は困難である。
我々は,高忠実度シミュレータのパラメータを限られたシミュレーション予算内で推測するために,安価な低忠実度シミュレーションを活用する,神経後部推定のための多忠実度アプローチであるMF-NPEを紹介する。
MF-NPEは、移動学習により限られた高忠実度資源を用いて神経後部推定を行い、アクティブラーニングを用いて個々の観察を優先順位付けする能力を持つ。
MF-NPEは、解析的地下構造と実世界の2つのタスクを持つ統計的タスクにおいて、最大2桁の高忠実度シミュレーションを必要としながら、現在の手法に匹敵する性能を示す。
全体として、MF-NPEは計算コストの高いシミュレータ上で効率の良いベイズ推定を行う新しい機会を開く。
関連論文リスト
- Active Sequential Posterior Estimation for Sample-Efficient Simulation-Based Inference [12.019504660711231]
逐次的神経後部推定(ASNPE)を導入する。
ASNPEは、シミュレーションパラメータ候補の効用を基礎となる確率モデルに推定するために、推論ループにアクティブな学習スキームをもたらす。
提案手法は,大規模実世界の交通ネットワークにおいて,高度に調整されたベンチマークと最先端の後方推定手法より優れる。
論文 参考訳(メタデータ) (2024-12-07T08:57:26Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
シミュレーションベース推論(SBI)は、入力パラメータを所定の観測に関連付ける後部分布を近似することができる。
本研究では、モデルのパラメータをより正確に推測するために、複数の観測値が利用できる、背の高いデータ拡張について考察する。
提案手法を,最近提案した各種数値実験の競合手法と比較し,数値安定性と計算コストの観点から,その優位性を実証した。
論文 参考訳(メタデータ) (2024-04-11T09:23:36Z) - Multifidelity linear regression for scientific machine learning from scarce data [0.0]
本稿では,線形回帰を用いた科学機械学習のための多面的学習手法を提案する。
我々は,提案手法の精度を保証し,高忠実度データの少ないロバスト性を向上する新しい推定器のバイアスと分散分析を行う。
論文 参考訳(メタデータ) (2024-03-13T15:40:17Z) - On Least Square Estimation in Softmax Gating Mixture of Experts [78.3687645289918]
決定論的MoEモデルに基づく最小二乗推定器(LSE)の性能について検討する。
我々は,多種多様な専門家関数の収束挙動を特徴付けるために,強い識別可能性という条件を確立する。
本研究は,専門家の選択に重要な意味を持つ。
論文 参考訳(メタデータ) (2024-02-05T12:31:18Z) - A Multi-Grained Symmetric Differential Equation Model for Learning Protein-Ligand Binding Dynamics [73.35846234413611]
薬物発見において、分子動力学(MD)シミュレーションは、結合親和性を予測し、輸送特性を推定し、ポケットサイトを探索する強力なツールを提供する。
我々は,数値MDを容易にし,タンパク質-リガンド結合ダイナミクスの正確なシミュレーションを提供する,最初の機械学習サロゲートであるNeuralMDを提案する。
従来の数値MDシミュレーションと比較して1K$times$ Speedupを実現することにより,NeuralMDの有効性と有効性を示す。
論文 参考訳(メタデータ) (2024-01-26T09:35:17Z) - Multi-fidelity climate model parameterization for better generalization
and extrapolation [0.3860305383611933]
我々は、異なる精度と豊富なデータセットを統合するマルチ忠実なアプローチが、両方の世界の長所を提供することを示す。
気候モデリングへの応用において、マルチ忠実度フレームワークは計算資源の大幅な増加を必要とせず、より正確な気候予測をもたらす。
論文 参考訳(メタデータ) (2023-09-19T01:03:39Z) - Robust Neural Posterior Estimation and Statistical Model Criticism [1.5749416770494706]
モデラーはシミュレータを真のデータ生成プロセスの理想主義的な表現として扱わなければならない。
本研究では,シミュレーションモデルにおけるブラックボックスパラメータ推論を可能にするアルゴリズムのクラスであるNPEを再検討する。
一方,NPEを経時的に用いた場合,不特定性の存在は信頼できない推論につながることが判明した。
論文 参考訳(メタデータ) (2022-10-12T20:06:55Z) - Neural Posterior Estimation with Differentiable Simulators [58.720142291102135]
微分可能シミュレータを用いてニューラル・ポストミラー推定(NPE)を行う新しい手法を提案する。
勾配情報が後部形状の制約にどのように役立ち、試料効率を向上させるかを示す。
論文 参考訳(メタデータ) (2022-07-12T16:08:04Z) - Multi-fidelity Hierarchical Neural Processes [79.0284780825048]
多要素代理モデリングは、異なるシミュレーション出力を融合させることで計算コストを削減する。
本稿では,多階層型階層型ニューラルネットワーク(MF-HNP)を提案する。
疫学および気候モデリングタスクにおけるMF-HNPの評価を行い、精度と不確実性評価の観点から競合性能を達成した。
論文 参考訳(メタデータ) (2022-06-10T04:54:13Z) - Deep Bayesian Active Learning for Accelerating Stochastic Simulation [74.58219903138301]
Interactive Neural Process(INP)は、シミュレーションとアクティブな学習アプローチのためのディープラーニングフレームワークである。
能動的学習のために,NPベースモデルの潜時空間で計算された新しい取得関数Latent Information Gain (LIG)を提案する。
その結果,STNPは学習環境のベースラインを上回り,LIGは能動学習の最先端を達成していることがわかった。
論文 参考訳(メタデータ) (2021-06-05T01:31:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。