Probing the self-coherence of primordial quantum fluctuations with complexity
- URL: http://arxiv.org/abs/2502.09739v1
- Date: Thu, 13 Feb 2025 19:49:13 GMT
- Title: Probing the self-coherence of primordial quantum fluctuations with complexity
- Authors: Arpan Bhattacharya, Suddhasattwa Brahma, S. Shajidul Haque, Jacob S. Lund, Arpon Paul,
- Abstract summary: A recently-proposed novel phenomenon is that of textitrecoherence, wherein a specific interaction between the adiabatic and the entropic sector leads to the adiabatic mode retaining a coherent state after a transient increase in linear entropy.
In this paper, we analyze the evolution of linear entropy, complexity of purification (COP), and complexity of formation (COF) to capture the interplay between decoherence and recoherence in this model.
- Score: 0.0
- License:
- Abstract: A smoking gun for our current paradigm of the early universe would be direct evidence for the quantum mechanical origin of density perturbations which are conjectured to seed the large scale structure of our universe. A recently-proposed novel phenomenon is that of \textit{recoherence}, wherein a specific interaction between the adiabatic and the entropic sector leads to the adiabatic mode retaining a coherent state after a transient increase in linear entropy. In this paper, we choose the most general Gaussian action and analyze the evolution of linear entropy, complexity of purification (COP), and complexity of formation (COF) to capture the interplay between decoherence and recoherence in this model. In the presence of two types of couplings that drive these two opposing characteristics, we highlight how COF is an efficient tool for diagnosing dynamics for such an open quantum system.
Related papers
- Crosscap Quenches and Entanglement Evolution [0.0]
We propose a novel quench protocol, termed the "crosscap quench"
We analyze conformal field theories (CFTs) and derive universal features in the time evolution of the entanglement entropy.
We validate these findings through numerical simulations in both nonintegrable and integrable quantum spin systems.
arXiv Detail & Related papers (2024-12-24T18:59:58Z) - The Early Universe as an Open Quantum System: Complexity and Decoherence [0.23436632098950458]
We show how complexity in an open quantum system can identify decoherence between two fields, even in the presence of an accelerating background.
This paper initiates a new pathway to explore the features of quantum complexity in an accelerating background, thereby expanding our understanding of the evolution of primordial cosmological perturbations in the early universe.
arXiv Detail & Related papers (2024-01-22T17:18:50Z) - Higher-order topological Peierls insulator in a two-dimensional
atom-cavity system [58.720142291102135]
We show how photon-mediated interactions give rise to a plaquette-ordered bond pattern in the atomic ground state.
The pattern opens a non-trivial topological gap in 2D, resulting in a higher-order topological phase hosting corner states.
Our work shows how atomic quantum simulators can be harnessed to investigate novel strongly-correlated topological phenomena.
arXiv Detail & Related papers (2023-05-05T10:25:14Z) - Sunburst quantum Ising model under interaction quench: entanglement and
role of initial state coherence [0.0]
We study the non-equilibrium dynamics of an isolated bipartite quantum system under interaction quench.
We show the importance of the role played by the coherence of the initial state in deciding the nature of thermalization.
arXiv Detail & Related papers (2022-12-23T11:57:47Z) - Interface dynamics in the two-dimensional quantum Ising model [0.0]
We show that the dynamics of interfaces, in the symmetry-broken phase of the two-dimensional ferromagnetic quantum Ising model, displays a robust form of ergodicity breaking.
We present a detailed analysis of the evolution of these interfaces both on the lattice and in a suitable continuum limit.
The implications of our work for the classic problem of the decay of a false vacuum are also discussed.
arXiv Detail & Related papers (2022-09-19T13:08:58Z) - Unification of Random Dynamical Decoupling and the Quantum Zeno Effect [68.8204255655161]
We show that the system dynamics under random dynamical decoupling converges to a unitary with a decoupling error that characteristically depends on the convergence speed of the Zeno limit.
This reveals a unification of the random dynamical decoupling and the quantum Zeno effect.
arXiv Detail & Related papers (2021-12-08T11:41:38Z) - Breakdown of quantum-classical correspondence and dynamical generation
of entanglement [6.167267225728292]
We study the generation of quantum entanglement induced by an ideal Fermi gas confined in a chaotic cavity.
We find that the breakdown of the quantum-classical correspondence of particle motion, via dramatically changing the spatial structure of many-body wavefunction, leads to profound changes of the entanglement structure.
arXiv Detail & Related papers (2021-04-14T03:09:24Z) - Sensing quantum chaos through the non-unitary geometric phase [62.997667081978825]
We propose a decoherent mechanism for sensing quantum chaos.
The chaotic nature of a many-body quantum system is sensed by studying the implications that the system produces in the long-time dynamics of a probe coupled to it.
arXiv Detail & Related papers (2021-04-13T17:24:08Z) - Analog cosmological reheating in an ultracold Bose gas [58.720142291102135]
We quantum-simulate the reheating-like dynamics of a generic cosmological single-field model in an ultracold Bose gas.
Expanding spacetime as well as the background oscillating inflaton field are mimicked in the non-relativistic limit.
The proposed experiment has the potential of exploring the evolution up to late times even beyond the weak coupling regime.
arXiv Detail & Related papers (2020-08-05T18:00:26Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Einselection from incompatible decoherence channels [62.997667081978825]
We analyze an open quantum dynamics inspired by CQED experiments with two non-commuting Lindblad operators.
We show that Fock states remain the most robust states to decoherence up to a critical coupling.
arXiv Detail & Related papers (2020-01-29T14:15:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.