Reconstruction of frequency-localized functions from pointwise samples via least squares and deep learning
- URL: http://arxiv.org/abs/2502.09794v1
- Date: Thu, 13 Feb 2025 22:05:18 GMT
- Title: Reconstruction of frequency-localized functions from pointwise samples via least squares and deep learning
- Authors: A. Martina Neuman, Andres Felipe Lerma Pineda, Jason J. Bramburger, Simone Brugiapaglia,
- Abstract summary: We study the problem of recovering frequency-localized functions from pointwise data.
We present a recovery guarantee for approximating bandlimited functions via deep learning from pointwise data.
We conclude with a discussion of the theoretical limitations and the practical gaps between theory and implementation.
- Score: 0.3749861135832072
- License:
- Abstract: Recovering frequency-localized functions from pointwise data is a fundamental task in signal processing. We examine this problem from an approximation-theoretic perspective, focusing on least squares and deep learning-based methods. First, we establish a novel recovery theorem for least squares approximations using the Slepian basis from uniform random samples in low dimensions, explicitly tracking the dependence of the bandwidth on the sampling complexity. Building on these results, we then present a recovery guarantee for approximating bandlimited functions via deep learning from pointwise data. This result, framed as a practical existence theorem, provides conditions on the network architecture, training procedure, and data acquisition sufficient for accurate approximation. To complement our theoretical findings, we perform numerical comparisons between least squares and deep learning for approximating one- and two-dimensional functions. We conclude with a discussion of the theoretical limitations and the practical gaps between theory and implementation.
Related papers
- In-Context Parametric Inference: Point or Distribution Estimators? [66.22308335324239]
We show that amortized point estimators generally outperform posterior inference, though the latter remain competitive in some low-dimensional problems.
Our experiments indicate that amortized point estimators generally outperform posterior inference, though the latter remain competitive in some low-dimensional problems.
arXiv Detail & Related papers (2025-02-17T10:00:24Z) - Sample-Efficient Geometry Reconstruction from Euclidean Distances using Non-Convex Optimization [7.114174944371803]
The problem of finding suitable point embedding Euclidean distance information point pairs arises both as a core task and as a sub-machine learning learning problem.
In this paper, we aim to solve this problem given a minimal number of samples.
arXiv Detail & Related papers (2024-10-22T13:02:12Z) - Debiasing Mini-Batch Quadratics for Applications in Deep Learning [22.90473935350847]
Quadratic approximations form a fundamental building block of machine learning methods.
When computations on the entire training set are intractable - typical for deep learning - the relevant quantities are computed on mini-batches.
We show that this bias introduces a systematic error, (ii) provide a theoretical explanation for it, (iii) explain its relevance for second-order optimization and uncertainty via the Laplace approximation in deep learning, and (iv) develop and evaluate debiasing strategies.
arXiv Detail & Related papers (2024-10-18T09:37:05Z) - Fine-grained analysis of non-parametric estimation for pairwise learning [9.676007573960383]
We are concerned with the generalization performance of non-parametric estimation for pairwise learning.
Our results can be used to handle a wide range of pairwise learning problems including ranking, AUC, pairwise regression and metric and similarity learning.
arXiv Detail & Related papers (2023-05-31T08:13:14Z) - Federated Representation Learning via Maximal Coding Rate Reduction [109.26332878050374]
We propose a methodology to learn low-dimensional representations from a dataset that is distributed among several clients.
Our proposed method, which we refer to as FLOW, utilizes MCR2 as the objective of choice, hence resulting in representations that are both between-class discriminative and within-class compressible.
arXiv Detail & Related papers (2022-10-01T15:43:51Z) - MongeNet: Efficient Sampler for Geometric Deep Learning [17.369783838267942]
MongeNet is a fast and optimal transport based sampler that allows for an accurate discretization of a mesh with better approximation properties.
We compare our method to the ubiquitous random uniform sampling and show that the approximation error is almost half with a very small computational overhead.
arXiv Detail & Related papers (2021-04-29T17:59:01Z) - Optimal oracle inequalities for solving projected fixed-point equations [53.31620399640334]
We study methods that use a collection of random observations to compute approximate solutions by searching over a known low-dimensional subspace of the Hilbert space.
We show how our results precisely characterize the error of a class of temporal difference learning methods for the policy evaluation problem with linear function approximation.
arXiv Detail & Related papers (2020-12-09T20:19:32Z) - Deep Magnification-Flexible Upsampling over 3D Point Clouds [103.09504572409449]
We propose a novel end-to-end learning-based framework to generate dense point clouds.
We first formulate the problem explicitly, which boils down to determining the weights and high-order approximation errors.
Then, we design a lightweight neural network to adaptively learn unified and sorted weights as well as the high-order refinements.
arXiv Detail & Related papers (2020-11-25T14:00:18Z) - A Constraint-Based Algorithm for the Structural Learning of
Continuous-Time Bayesian Networks [70.88503833248159]
We propose the first constraint-based algorithm for learning the structure of continuous-time Bayesian networks.
We discuss the different statistical tests and the underlying hypotheses used by our proposal to establish conditional independence.
arXiv Detail & Related papers (2020-07-07T07:34:09Z) - Latent Network Structure Learning from High Dimensional Multivariate
Point Processes [5.079425170410857]
We propose a new class of nonstationary Hawkes processes to characterize the complex processes underlying the observed data.
We estimate the latent network structure using an efficient sparse least squares estimation approach.
We demonstrate the efficacy of our proposed method through simulation studies and an application to a neuron spike train data set.
arXiv Detail & Related papers (2020-04-07T17:48:01Z) - Spatially Adaptive Inference with Stochastic Feature Sampling and
Interpolation [72.40827239394565]
We propose to compute features only at sparsely sampled locations.
We then densely reconstruct the feature map with an efficient procedure.
The presented network is experimentally shown to save substantial computation while maintaining accuracy over a variety of computer vision tasks.
arXiv Detail & Related papers (2020-03-19T15:36:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.