論文の概要: INJONGO: A Multicultural Intent Detection and Slot-filling Dataset for 16 African Languages
- arxiv url: http://arxiv.org/abs/2502.09814v1
- Date: Thu, 13 Feb 2025 23:17:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-17 18:06:56.633785
- Title: INJONGO: A Multicultural Intent Detection and Slot-filling Dataset for 16 African Languages
- Title(参考訳): INJONGO:16のアフリカ言語に対する多文化インテント検出とスロットフルデータセット
- Authors: Hao Yu, Jesujoba O. Alabi, Andiswa Bukula, Jian Yun Zhuang, En-Shiun Annie Lee, Tadesse Kebede Guge, Israel Abebe Azime, Happy Buzaaba, Blessing Kudzaishe Sibanda, Godson K. Kalipe, Jonathan Mukiibi, Salomon Kabongo Kabenamualu, Mmasibidi Setaka, Lolwethu Ndolela, Nkiruka Odu, Rooweither Mabuya, Shamsuddeen Hassan Muhammad, Salomey Osei, Sokhar Samb, Juliet W. Murage, Dietrich Klakow, David Ifeoluwa Adelani,
- Abstract要約: スロットフィリングとインテント検出は、会話型AIにおいて確立されたタスクである。
Injongoは16のアフリカ言語のための、多文化でオープンソースのベンチマークデータセットです。
アフリカ文化の発話を西洋中心の発話に活用して言語間移動を改善する利点を示す。
- 参考スコア(独自算出の注目度): 15.983678567785004
- License:
- Abstract: Slot-filling and intent detection are well-established tasks in Conversational AI. However, current large-scale benchmarks for these tasks often exclude evaluations of low-resource languages and rely on translations from English benchmarks, thereby predominantly reflecting Western-centric concepts. In this paper, we introduce Injongo -- a multicultural, open-source benchmark dataset for 16 African languages with utterances generated by native speakers across diverse domains, including banking, travel, home, and dining. Through extensive experiments, we benchmark the fine-tuning multilingual transformer models and the prompting large language models (LLMs), and show the advantage of leveraging African-cultural utterances over Western-centric utterances for improving cross-lingual transfer from the English language. Experimental results reveal that current LLMs struggle with the slot-filling task, with GPT-4o achieving an average performance of 26 F1-score. In contrast, intent detection performance is notably better, with an average accuracy of 70.6%, though it still falls behind the fine-tuning baselines. Compared to the English language, GPT-4o and fine-tuning baselines perform similarly on intent detection, achieving an accuracy of approximately 81%. Our findings suggest that the performance of LLMs is still behind for many low-resource African languages, and more work is needed to further improve their downstream performance.
- Abstract(参考訳): スロットフィリングとインテント検出は、会話型AIにおいて確立されたタスクである。
しかしながら、これらのタスクに対する現在の大規模なベンチマークでは、低リソース言語の評価を除外し、英語のベンチマークからの翻訳に依存しており、西洋中心の概念を主に反映している。
本稿では,銀行,旅行,家庭,食事など,さまざまな領域でネイティブスピーカーが発声する16のアフリカの言語を対象とした,多文化のオープンソースベンチマークデータセットであるInjongoを紹介する。
広範にわたる実験を通じて, 微調整多言語トランスフォーマーモデルと大規模言語モデル(LLM)をベンチマークし, アフリカ文化の発話を西洋中心の発話よりも活用し, 英語からの言語間移動を改善する利点を示す。
実験結果から,現在のLCMはスロット充足作業に苦慮し,GPT-4oは26F1スコアの平均性能を達成した。
対照的に、インテント検出性能は特に良く、平均精度は70.6%である。
英語と比較して、GPT-4oと微調整ベースラインはインテント検出でも同じように動作し、精度は約81%である。
以上の結果から,LLMの性能は低リソースのアフリカ諸言語ではまだ遅れており,下流の性能向上にはさらなる作業が必要であることが示唆された。
関連論文リスト
- Cultural Fidelity in Large-Language Models: An Evaluation of Online Language Resources as a Driver of Model Performance in Value Representation [0.0]
GPT-4oが国の社会的価値を反映する能力は、その言語でデジタルリソースが利用可能であることと相関していることを示す。
低リソース言語、特にグローバル・サウスで顕著なWeakerのパフォーマンスは、デジタル・ディビジョンを悪化させる可能性がある。
論文 参考訳(メタデータ) (2024-10-14T13:33:00Z) - IrokoBench: A New Benchmark for African Languages in the Age of Large Language Models [18.083861654053585]
IrokoBenchは17の原型的に異なる低リソースのアフリカ言語のための人間翻訳ベンチマークデータセットである。
IrokoBenchを使って、10のオープンおよび6つのプロプライエタリ言語モデルでゼロショット、少数ショット、および翻訳テストの設定(テストセットを英語に翻訳する)を評価します。
オープンモデルとプロプライエタリモデルの間には大きなパフォーマンスギャップがあり、最高パフォーマンスのオープンモデルであるGemma 2 27Bは、最高のパフォーマンスのプロプライエタリモデルであるGPT-4oのパフォーマンスの63%に過ぎません。
論文 参考訳(メタデータ) (2024-06-05T15:23:08Z) - Beyond Metrics: Evaluating LLMs' Effectiveness in Culturally Nuanced, Low-Resource Real-World Scenarios [29.56889133557681]
本研究では、WhatsAppチャットから派生したデータセットに対する感情分析において、7つの主要言語モデル(LLM)の性能を評価する。
Mistral-7bとMixtral-8x7bは高いF1スコアを得たが、GPT-3.5-Turbo, Llama-2-70b, Gemma-7bは言語的・文脈的ニュアンスを理解するのに苦労していた。
GPT-4とGPT-4-Turboは多様な言語入力を把握し、様々な文脈情報を管理するのに優れていた。
論文 参考訳(メタデータ) (2024-06-01T07:36:59Z) - CIF-Bench: A Chinese Instruction-Following Benchmark for Evaluating the Generalizability of Large Language Models [53.9835961434552]
本研究では,中国語に対する大規模言語モデル(LLM)の一般化性を評価するために,中国語命令追跡ベンチマーク(CIF-Bench)を導入する。
CIF-Benchは150のタスクと15,000の入力出力ペアで構成され、複雑な推論と中国の文化的ニュアンスをテストするためにネイティブスピーカーによって開発された。
データ汚染を軽減するため、データセットの半分しか公開せず、残りは非公開であり、スコア分散を最小限に抑えるために多種多様な命令を導入する。
論文 参考訳(メタデータ) (2024-02-20T16:02:12Z) - Zero-Shot Cross-Lingual Reranking with Large Language Models for
Low-Resource Languages [51.301942056881146]
アフリカ語における言語間情報検索システムにおいて,大規模言語モデル (LLM) がリランカーとしてどのように機能するかを検討する。
私たちの実装は、英語と4つのアフリカの言語(ハウサ語、ソマリ語、スワヒリ語、ヨルバ語)を対象としています。
我々は、英語のクェリとアフリカの言葉の文節による言語横断的な格付けについて検討する。
論文 参考訳(メタデータ) (2023-12-26T18:38:54Z) - Breaking Language Barriers in Multilingual Mathematical Reasoning: Insights and Observations [59.056367787688146]
本稿では, マルチリンガル数学推論 (xMR) LLM の探索と学習の先駆者である。
我々は10の異なる言語を含む最初の多言語数学推論命令データセットMGSM8KInstructを構築した。
翻訳を利用して、10個の異なる言語を含む最初の多言語数学推論命令データセットMGSM8KInstructを構築した。
論文 参考訳(メタデータ) (2023-10-31T08:09:20Z) - Extrapolating Large Language Models to Non-English by Aligning Languages [109.09051737966178]
既存の大きな言語モデルは、異なる言語間で異なる能力を示す。
本稿では,言語間のセマンティックアライメントを構築することで,英語以外の言語に事前学習したLLMを強化する。
論文 参考訳(メタデータ) (2023-08-09T13:32:06Z) - AfroMT: Pretraining Strategies and Reproducible Benchmarks for
Translation of 8 African Languages [94.75849612191546]
AfroMTは、広く話されている8つのアフリカ言語のための標準化され、クリーンで再現可能な機械翻訳ベンチマークである。
これらの言語の特徴を考慮に入れたシステム診断のための分析ツール群を開発した。
11言語での事前トレーニングでは,強いベースラインに対して最大2つのBLEUポイントのゲインが得られた。
論文 参考訳(メタデータ) (2021-09-10T07:45:21Z) - AmericasNLI: Evaluating Zero-shot Natural Language Understanding of
Pretrained Multilingual Models in Truly Low-resource Languages [75.08199398141744]
我々は、XNLI(Conneau et al)の拡張である AmericasNLI を提示する。
は、アメリカ大陸の10の原住民の言語である。
XLM-Rで実験を行い、複数のゼロショットおよび翻訳ベースのアプローチをテストします。
XLM-Rのゼロショット性能は全10言語で低調であり、平均性能は38.62%である。
論文 参考訳(メタデータ) (2021-04-18T05:32:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。